Electronic Excitation of Atoms and Molecules for the FIRE II Flight Experiment

An accurate investigation of the behavior of electronically excited states of atoms and molecules in the postshock relaxation zone of a trajectory point of the Flight Investigation of ReentryEnvironment 2 (FIRE II) flight experiment is carried out bymeans of a one-dimensional flow solver coupled to a collisional-radiativemodel. Themodel accounts for thermal nonequilibrium between the translational energy mode of the gas and the vibrational energy mode of individualmolecules. Furthermore, electronic states of atoms andmolecules are treated as separate species, allowing for non-Boltzmann distributions of their populations. In the rapidly ionizing regime behind a strong shockwave, the high-lying bound electronic states of atoms are depleted. This leads to the electronic energy level populations of atoms departing from the Boltzmann distributions. For molecular species, departures from Boltzmann equilibrium are limited to a narrow zone close to the shock front. A comparison with the recent model derived by Park (Park, C., “Parameters for Electronic Excitation of Diatomic Molecules 1. Electron-Impact Processes,” 46th AIAAAerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2008-1206, 2008.) shows adequate agreement for predictions involving molecules. However, the predictions of the electronic level populations of atoms differ significantly. Based on the detailed collisional-radiative model developed, a reduced kinetic mechanism has been designed for implementation into two-dimensional or three-dimensional flow codes.

[1]  Graham V. Candler,et al.  Thermal rate constants of the N 2 +O→NO+N reaction using ab initio 3 A″ and 3 A' potential energy surfaces , 1996 .

[2]  I. Adamovich,et al.  Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model , 1998 .

[3]  B. Potapkin,et al.  Physical and Chemical Processes in Gas Dynamics: Physical and Chemical Kinetics and Thermodynamics of Gases and Plasmas, Volume II , 2004 .

[4]  Olivier Chazot,et al.  Analysis of the FIRE II Flight Experiment by Means of a Collisional Radiative Model , 2008 .

[5]  Anne Bourdon,et al.  Ionization and recombination rates of atomic oxygen in high-temperature air plasma flows , 1998 .

[6]  Anne Bourdon,et al.  Nonequilibrium radiative heat flux modeling for the Huygens entry probe , 2006 .

[7]  S. Surzhikov Electronic Excitation in Air and Carbon Dioxide Gas , 2009 .

[8]  J. Bacri,et al.  Electron diatomic molecule weighted total cross section calculation: II. Application to the nitrogen molecule , 1980 .

[9]  H. Drawin Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas , 1968 .

[10]  Charles H. Kruger,et al.  Arrays of radiative transition probabilities for the N2 first and second positive, no beta and gamma, N+2 first negative, and O2 Schumann-Runge band systems , 1992 .

[11]  Olivier Chazot,et al.  Fire II Flight Experiment Analysis by Means of a Collisional-Radiative Model , 2009 .

[12]  M. Capitelli,et al.  Some Aspects in Recombining Transient Nitrogen Plasmas Some Aspects in Recombining Transient Nitrogen Plasmas Some Aspects in Recombining Transient Nitrogen Plasmas Some Aspects in Recombining Transient Nitrogen Plasmas Some Aspects in Recombining Transient Nitrogen Plasmas Some Aspects in Recombini , 1978 .

[13]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[14]  P. Vervisch,et al.  Influence of Ar(2)+ in an argon collisional-radiative model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Keun-Shik Chang,et al.  Rate Parameters for Electronic Excitation of Diatomic Molecules, III. CN radiation behind a Shock Wave , 2008 .

[16]  Radiative transfer in gases under thermal and chemical nonequilibrium conditions: Application to earth atmospheric re-entry , 2008 .

[17]  Mario Capitelli,et al.  N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations , 2006 .

[18]  M. Capitelli,et al.  A few level approach for the electronic partition function of atomic systems , 2009 .

[19]  J. Cambier,et al.  Simulations of a molecular plasma in collisional-radiative nonequilibrium , 1993 .

[20]  G. Candler,et al.  Thermal rate constants of the O2+N→NO+O reaction based on the A2′ and A4′ potential-energy surfaces , 1997 .

[21]  Bourdon,et al.  Three-body recombination rate of atomic nitrogen in low-pressure plasma flows. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  M. Capitelli,et al.  Coupled solution of a time-dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas , 2001 .

[23]  Olivier Chazot,et al.  Predictions of nonequilibrium radiation: analysis and comparison with EAST experiments , 2008 .

[24]  Harry Partridge,et al.  Chemical-kinetic parameters of hyperbolic Earth entry , 2000 .

[25]  Philip C. Cosby,et al.  Electron‐impact dissociation of oxygen , 1993 .

[26]  Mario Capitelli,et al.  Plasma Kinetics in Atmospheric Gases , 2000 .

[27]  Anne Bourdon,et al.  Collisional-radiative model in air for earth re-entry problems , 2006 .

[28]  Chul B. Park Thermochemical Relaxation in Shock Tunnels , 2006 .

[29]  C. Park,et al.  Radiation Enhancement by Nonequilibrium in Earth's Atmosphere , 1985 .

[30]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[31]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[32]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[33]  J. Bacri,et al.  Electron diatomic molecule weighted total cross section calculation , 1980 .

[34]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[35]  Christopher O. Johnston,et al.  Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry , 2006 .

[36]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[37]  Soon,et al.  Collisional-radiative nonequilibrium in partially ionized atomic nitrogen. , 1989, Physical review. A, General physics.

[38]  M. Capitelli,et al.  The temporal evolution of population densities of excited states in atomic oxygen thin plasmas , 1976 .

[39]  J. Bacri,et al.  Electron diatomic molecule weighted total cross section calculation: I. Principles for calculation , 1980 .

[40]  J. Bacri,et al.  Collisional-radiative modeling of quasi-thermal air plasmas with electronic temperatures between 2000 and 13,000 K-I: Theta(sub e) is greater than 4000 K , 1995 .

[41]  P. Teulet,et al.  CALCULATION OF ELECTRON IMPACT INELASTIC CROSS SECTIONS AND RATE COEFFICIENTS FOR DIATOMIC MOLECULES. APPLICATION TO AIR MOLECULES , 1999 .

[42]  S. Surzhikov,et al.  Kinetic Models of Non-Equilibrium Radiation for Strong Air Shock Waves , 2006 .

[43]  I. A. Kossyi,et al.  Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures , 1992 .

[44]  Philip C. Cosby,et al.  Electron‐impact dissociation of nitrogen , 1993 .

[45]  I. Adamovich,et al.  Semiclassical modeling of state-specific dissociation rates in diatomic gases , 2000 .

[46]  R. Jaffe,et al.  Dissociation Cross Sections and Rate Coefficients for Nitrogen from Accurate Theoretical Calculations , 2008 .

[47]  M. Capitelli,et al.  Reduction of State-to-State Kinetics to Macroscopic Models in Hypersonic Flows , 2006 .

[48]  D. R. Bates,et al.  Recombination between electrons and atomic ions, I. Optically thin plasmas , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  V. Gorelov,et al.  Ionization particularities behind intensive shock waves in air at velocities of 8-15 km/s , 1994 .

[50]  W. Lotz,et al.  Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium , 1968 .

[51]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[52]  David W. Schwenke,et al.  Vibrational and Rotational Excitation and Relaxation of Nitrogen from Accurate Theoretical Calculations , 2008 .

[53]  M. Capitelli,et al.  Recombination-Assisted Nitrogen Dissociation Rates Under Nonequilibrium Conditions , 2008 .

[54]  J. Bacri,et al.  Collisional-radiative modelling of quasi-thermal air plasmas with electronic temperatures between 2000 and 13,000 K—II. 2000 K⩽Θe⩽4000 K , 1995 .

[55]  J. D. Teare,et al.  Theory of Radiation from Luminous Shock Waves in Nitrogen , 1959 .

[56]  P. V. Marrone,et al.  Chemical Relaxation with Preferential Dissociation from Excited Vibrational Levels , 1963 .

[57]  Chul B. Park Rate Parameters for Electronic Excitation of Diatomic Molecules 1. Electron-Impact Processes , 2008 .

[58]  W. C. Martin,et al.  NIST Atomic Spectra Database (version 2.0) (1999) | NIST , 1999 .