Restricted Towers of Hanoi and Morphisms

The classical towers of Hanoi have been generalized in several ways. In particular the second named author has studied the 3-peg Hanoi towers with all possible restrictions on the permitted moves between pegs. We prove that all these Hanoi puzzles give rise to infinite morphic sequences of moves, whose appropriate truncations describe the transfer of any given number of disks. Furthermore two of these infinite sequences are actually automatic sequences.

[1]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[2]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[3]  J. Shallit,et al.  Morphisms, Squarefree Strings, and the Tower of Hanoi Puzzle , 1994 .

[4]  Amir Sapir,et al.  The Tower of Hanoi with Forbidden Moves , 2004, Comput. J..

[5]  Mike D. Atkinson,et al.  The Cyclic Towers of Hanoi , 1981, Inf. Process. Lett..

[6]  Jeffrey Shallit A Generalization of Automatic Sequences , 1988, Theor. Comput. Sci..

[7]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[8]  Jeffrey Shallit,et al.  Sur Des Points Fixes De Morphismes D'Un Monoïde Libre , 1989, RAIRO Theor. Informatics Appl..

[9]  Jean-Paul Allouche,et al.  Note on the Cyclic Towers of Hanoi , 1994, Theor. Comput. Sci..

[10]  C. Smith,et al.  Some Binary Games , 1944, The Mathematical Gazette.

[11]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[12]  Sandi Klavzar,et al.  Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence , 2005, Eur. J. Comb..

[13]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[14]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[15]  Jean-Paul Allouche,et al.  Tours de Hanoï et automates , 1990, RAIRO Theor. Informatics Appl..

[16]  A. M. Hinz,et al.  Pascal's triangle and the tower of Hanoi , 1992 .

[17]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[18]  Jeffrey Shallit,et al.  An efficient algorithm for computing the i th letter of 4 n a , 1999, SODA 1999.

[19]  J. Allouche,et al.  Toeplitz sequences, paperfolding, towers of Hanoi and progression-free sequence of integers , 1992 .

[20]  Fabien Durand,et al.  Combinatorial and Dynamical Study of Substitutions Around the Theorem of Cobham , 2002 .