Caffeine reduces resting-state BOLD functional connectivity in the motor cortex

[1]  O. Cameron,et al.  Caffeine and human cerebral blood flow: a positron emission tomography study. , 1990, Life sciences.

[2]  A. Villringer,et al.  Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats , 1993, Neuroscience Letters.

[3]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[4]  A. Hudetz,et al.  Modification of cerebral laser-Doppler flow oscillations by halothane, PCO2, and nitric oxide synthase blockade. , 1995, The American journal of physiology.

[5]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[6]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[7]  B. Biswal,et al.  Hypercapnia Reversibly Suppresses Low-Frequency Fluctuations in the Human Motor Cortex during Rest Using Echo–Planar MRI , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  G. Kaplan,et al.  Dose‐Dependent Pharmacokinetics and Psychomotor Effects of Caffeine in Humans , 1997, Journal of clinical pharmacology.

[9]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[10]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[11]  B. Fredholm,et al.  Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. , 1999, Pharmacological reviews.

[12]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[13]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[14]  R. Herning,et al.  Caffeine withdrawal increases cerebral blood flow velocity and alters quantitative electroencephalography (EEG) activity , 2000, Psychopharmacology.

[15]  B. Biswal,et al.  Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI , 2000, Magnetic resonance in medicine.

[16]  J. Detre,et al.  Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. , 2000, Stroke.

[17]  A. Villringer,et al.  Spontaneous Low Frequency Oscillations of Cerebral Hemodynamics and Metabolism in Human Adults , 2000, NeuroImage.

[18]  S. Posse,et al.  Effect of Respiratory CO2 Changes on the Temporal Dynamics of the Hemodynamic Response in Functional MR Imaging , 2001, NeuroImage.

[19]  T. Dunwiddie,et al.  The Role and Regulation of Adenosine in the Central Nervous System , 2022 .

[20]  R. Buxton,et al.  Detection Power, Estimation Efficiency, and Predictability in Event-Related fMRI , 2001, NeuroImage.

[21]  A. Ngai,et al.  Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. , 2001, American journal of physiology. Heart and circulatory physiology.

[22]  V. Haughton,et al.  Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. , 2001, AJNR. American journal of neuroradiology.

[23]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[24]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Lurito,et al.  Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. , 2002, Radiology.

[26]  P. Skudlarski,et al.  Detection of functional connectivity using temporal correlations in MR images , 2002, Human brain mapping.

[27]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[28]  D. Gitelman,et al.  On the Use of Caffeine as a Contrast Booster for BOLD fMRI Studies , 2002, NeuroImage.

[29]  M. Siepmann,et al.  Effects of Caffeine on Topographic Quantitative EEG , 2002, Neuropsychobiology.

[30]  K. Uğurbil,et al.  Effect of Basal Conditions on the Magnitude and Dynamics of the Blood Oxygenation Level-Dependent fMRI Response , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  R. Reeves,et al.  Topographic Quantitative EEG Response to Acute Caffeine Withdrawal: A Comprehensive Analysis of Multiple Quantitative Variables , 2002, Clinical EEG.

[32]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Hellmuth Obrig,et al.  Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy , 2003, NeuroImage.

[34]  Andreas Kleinschmidt,et al.  EEG-correlated fMRI of human alpha activity , 2003, NeuroImage.

[35]  M. D’Esposito,et al.  Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging , 2003, Nature Reviews Neuroscience.

[36]  H. Lieberman,et al.  The effects of low doses of caffeine on human performance and mood , 2004, Psychopharmacology.

[37]  Irene Tracey,et al.  Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal , 2004, NeuroImage.

[38]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[39]  Thomas T. Liu,et al.  Caffeine alters the temporal dynamics of the visual BOLD response , 2004, NeuroImage.

[40]  W. Dimpfel,et al.  The influence of caffeine on human EEG under resting condition and during mental loads , 1993, The clinical investigator.

[41]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[42]  J. P. Morgan,et al.  Design and Analysis: A Researcher's Handbook , 2005, Technometrics.

[43]  John E. W. Mayhew,et al.  The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation , 2005, NeuroImage.

[44]  Maolin Qiu,et al.  In vivo method for correcting transmit/receive nonuniformities with phased array coils , 2005, Magnetic resonance in medicine.

[45]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Timothy Q. Duong,et al.  Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals , 2005, NeuroImage.

[47]  O. Tervonen,et al.  Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. , 2005, Magnetic resonance imaging.

[48]  P. Sebel,et al.  Functional connectivity changes with concentration of sevoflurane anesthesia , 2005, Neuroreport.

[49]  Thomas T. Liu,et al.  An arteriolar compliance model of the cerebral blood flow response to neural stimulus , 2005, NeuroImage.

[50]  P. Skudlarski,et al.  Brain Connectivity Related to Working Memory Performance , 2006, The Journal of Neuroscience.

[51]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[52]  Thomas E. Nichols,et al.  Estimation efficiency and statistical power in arterial spin labeling fMRI , 2006, NeuroImage.

[53]  Thomas T. Liu,et al.  Physiological noise reduction for arterial spin labeling functional MRI , 2006, NeuroImage.

[54]  Thomas T. Liu,et al.  Caffeine reduces the initial dip in the visual BOLD response at 3 T , 2006, NeuroImage.

[55]  J. Voyvodic Activation mapping as a percentage of local excitation: fMRI stability within scans, between scans and across field strengths. , 2006, Magnetic Resonance Imaging.

[56]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[57]  V. Calhoun,et al.  Aberrant "default mode" functional connectivity in schizophrenia. , 2007, The American journal of psychiatry.

[58]  Fernando Henrique Lopes da Silva,et al.  The hemodynamic response of the alpha rhythm: An EEG/fMRI study , 2007, NeuroImage.

[59]  Thomas T. Liu,et al.  Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: A calibrated BOLD fMRI study , 2008, NeuroImage.

[60]  N. Logothetis,et al.  The Influence of Moderate Hypercapnia on Neural Activity in the Anesthetized Nonhuman Primate , 2008, Cerebral cortex.

[61]  R. Oostenveld,et al.  Frontal theta EEG activity correlates negatively with the default mode network in resting state. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[62]  D. Cai,et al.  Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory , 2008, Behavioural Brain Research.

[63]  Thomas T. Liu,et al.  Caffeine reduces the activation extent and contrast-to-noise ratio of the functional cerebral blood flow response but not the BOLD response , 2008, NeuroImage.

[64]  S. Lui,et al.  Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. Partial seizure , 2008, Journal of magnetic resonance imaging : JMRI.

[65]  A. Villringer,et al.  Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI‐BOLD signal in primary somatosensory and motor cortex , 2009, Human brain mapping.

[66]  Eduardo A. B. da Silva,et al.  Digital Signal Processing System Analysis and Design: Preface , 2010 .