On the degree of ill-posedness of multi-dimensional magnetic particle imaging
暂无分享,去创建一个
[1] Tobias Kluth,et al. Mathematical models for magnetic particle imaging , 2018, Inverse Problems.
[2] Yong Wu,et al. Dependence of Brownian and Néel relaxation times on magnetic field strength. , 2013, Medical physics.
[3] B Gleich,et al. A simulation study on the resolution and sensitivity of magnetic particle imaging , 2007, Physics in medicine and biology.
[4] Zhimin Zhang,et al. How Many Numerical Eigenvalues Can We Trust? , 2013, J. Sci. Comput..
[5] Stefan Kindermann,et al. On the Degree of Ill-posedness for Linear Problems with Noncompact Operators , 2010 .
[6] Michael Griebel,et al. Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .
[7] Thorsten M. Buzug,et al. Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging , 2017, 1711.08074.
[8] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[9] Thorsten M. Buzug,et al. Model-Based Reconstruction for Magnetic Particle Imaging , 2010, IEEE Transactions on Medical Imaging.
[10] Volker Behr und Peter Jakob. Magnetic particle imaging. , 2015, Zeitschrift fur medizinische Physik.
[11] B Gleich,et al. Three-dimensional real-time in vivo magnetic particle imaging , 2009, Physics in medicine and biology.
[12] Tobias Knopp,et al. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach , 2016, PloS one.
[13] A. Pietsch. Eigenvalues and S-Numbers , 1987 .
[14] G. Burton. Sobolev Spaces , 2013 .
[15] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[16] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[17] A. Louis. Inverse und schlecht gestellte Probleme , 1989 .
[18] A. Weinmann,et al. Model-Based Reconstruction for Magnetic Particle Imaging in 2D and 3D , 2016, 1605.08095.
[19] K. M. Krishnan,et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. , 2017, Nanoscale.
[20] Anselm von Gladiss,et al. MDF: Magnetic Particle Imaging Data Format , 2016, 1602.06072.
[21] B. Hofmann,et al. On Ill-Posedness Measures and Space Change in Sobolev Scales , 1997 .
[22] Anna Bakenecker,et al. Experimental Validation of the Selection Field of a Rabbit-Sized FFL Scanner , 2017 .
[23] Patrick W. Goodwill,et al. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. , 2017, Nano letters.
[24] Bernhard Gleich,et al. Magnetic particle imaging using a field free line , 2008 .
[25] Tobias Knopp,et al. Sensitivity Enhancement in Magnetic Particle Imaging by Background Subtraction , 2016, IEEE Transactions on Medical Imaging.
[26] Bangti Jin,et al. Inverse Problems , 2014, Series on Applied Mathematics.
[27] H. König. Eigenvalue Distribution of Compact Operators , 1986 .
[28] P. Maass,et al. Wavelet-Galerkin methods for ill-posed problems , 1996 .
[29] G. Wahba. Ill Posed Problems: Numerical and Statistical Methods for Mildly, Moderately and Severely Ill Posed Problems with Noisy Data. , 1980 .
[30] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[31] Jan van Neerven,et al. Analysis in Banach Spaces , 2023, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
[32] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[33] Thorsten M. Buzug,et al. Singular value analysis for Magnetic Particle Imaging , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.
[34] Bernhard Gleich,et al. Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.
[35] Olaf Kosch,et al. Concentration Dependent MPI Tracer Performance , 2016 .
[36] Thorsten M. Buzug,et al. A Fourier slice theorem for magnetic particle imaging using a field-free line , 2011 .
[37] Tobias Knopp,et al. Magnetic particle imaging: from proof of principle to preclinical applications , 2017, Physics in medicine and biology.
[38] M. Krasnosel’skiǐ,et al. Integral operators in spaces of summable functions , 1975 .
[39] Bernd Hofmann,et al. Direct and inverse results in variable Hilbert scales , 2008, J. Approx. Theory.
[40] Mathematical Analysis of the 1 D Model and Reconstruction Schemes for Magnetic Particle Imaging , 2022 .
[41] A. Owen. Quasi-Monte Carlo for integrands with point singularities at unknown locations , 2004 .
[42] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[43] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[44] Kenya Murase,et al. Usefulness of Magnetic Particle Imaging for Predicting the Therapeutic Effect of Magnetic Hyperthermia , 2015 .
[45] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[46] Bernhard Gleich,et al. Magnetic Particle imaging : Visualization of Instruments for Cardiovascular Intervention 1 , 2012 .
[47] Guanglian Li,et al. On the Decay Rate of the Singular Values of Bivariate Functions , 2018, SIAM J. Numer. Anal..
[48] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[49] Tobias Kluth,et al. Model uncertainty in magnetic particle imaging: Nonlinear problem formulation and model-based sparse reconstruction , 2017 .
[50] Otmar Scherzer,et al. Factors influencing the ill-posedness of nonlinear problems , 1994 .
[51] Thorsten M. Buzug,et al. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation , 2012 .
[52] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[53] Tsuyoshi Murata,et al. {m , 1934, ACML.