Focused Linear Logic and the λ-calculus
暂无分享,去创建一个
[1] Olivier Laurent. Polarized Proof-Nets and Lambda µ-Calculus , 1999 .
[2] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[3] Dale Miller,et al. Least and Greatest Fixed Points in Linear Logic , 2007, LPAR.
[4] Gianluigi Bellin,et al. On the pi-Calculus and Linear Logic , 1992, Theor. Comput. Sci..
[5] Lutz Straßburger,et al. The Focused Calculus of Structures , 2011, CSL.
[6] Olivier Laurent,et al. Étude de la polarisation en logique , 2001 .
[7] Stéphane Zimmermann. Vers une ludique différentielle , 2013 .
[8] Paul Blain Levy,et al. Call-by-push-value: Decomposing call-by-value and call-by-name , 2006, High. Order Symb. Comput..
[9] Paul Curzon,et al. On Intuitionistic Linear Logic , 2005 .
[10] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[11] Roy Dyckhoff,et al. LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.
[12] Hugo Herbelin. Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .
[13] Delia Kesner,et al. Resource operators for lambda-calculus , 2007, Inf. Comput..
[14] Ugo Dal Lago,et al. (Leftmost-Outermost) Beta Reduction is Invariant, Indeed , 2016, Log. Methods Comput. Sci..
[15] M. Nivat. Fiftieth volume of theoretical computer science , 1988 .
[16] Philip Wadler. Propositions as sessions , 2014, J. Funct. Program..
[17] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[18] Robert J. Simmons,et al. Structural Focalization , 2011, TOCL.
[19] Delia Kesner,et al. Resource operators for λ-calculus , 2007 .
[20] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[21] Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability , 2009, CSL.
[22] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[23] Philip Wadler,et al. A Syntax for Linear Logic , 1993, MFPS.
[24] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[25] Delia Kesner,et al. A nonstandard standardization theorem , 2014, POPL.
[26] Dale Miller,et al. Focusing and Polarization in Intuitionistic Logic , 2007, CSL.