Focused Linear Logic and the λ-calculus

Linear logic enjoys strong symmetries inherited from classical logic while providing a constructive framework comparable to intuitionistic logic. However, the computational interpretation of sequent calculus presentations of linear logic remains problematic, mostly because of the many rule permutations allowed in the sequent calculus. We address this problem by providing a simple interpretation of focused proofs, a complete subclass of linear sequent proofs known to have a much stronger structure than the standard sequent calculus for linear logic. Despite the classical setting, the interpretation relates proofs to a refined linear λ-calculus, and we investigate its properties and relation to other calculi, such as the usual λ-calculus, the λµ-calculus, and their variants based on sequent calculi.

[1]  Olivier Laurent Polarized Proof-Nets and Lambda µ-Calculus , 1999 .

[2]  Hugo Herbelin,et al.  A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.

[3]  Dale Miller,et al.  Least and Greatest Fixed Points in Linear Logic , 2007, LPAR.

[4]  Gianluigi Bellin,et al.  On the pi-Calculus and Linear Logic , 1992, Theor. Comput. Sci..

[5]  Lutz Straßburger,et al.  The Focused Calculus of Structures , 2011, CSL.

[6]  Olivier Laurent,et al.  Étude de la polarisation en logique , 2001 .

[7]  Stéphane Zimmermann Vers une ludique différentielle , 2013 .

[8]  Paul Blain Levy,et al.  Call-by-push-value: Decomposing call-by-value and call-by-name , 2006, High. Order Symb. Comput..

[9]  Paul Curzon,et al.  On Intuitionistic Linear Logic , 2005 .

[10]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[11]  Roy Dyckhoff,et al.  LJQ: A Strongly Focused Calculus for Intuitionistic Logic , 2006, CiE.

[12]  Hugo Herbelin Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms and as a calculus of winning strategies) , 1995 .

[13]  Delia Kesner,et al.  Resource operators for lambda-calculus , 2007, Inf. Comput..

[14]  Ugo Dal Lago,et al.  (Leftmost-Outermost) Beta Reduction is Invariant, Indeed , 2016, Log. Methods Comput. Sci..

[15]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[16]  Philip Wadler Propositions as sessions , 2014, J. Funct. Program..

[17]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[18]  Robert J. Simmons,et al.  Structural Focalization , 2011, TOCL.

[19]  Delia Kesner,et al.  Resource operators for λ-calculus , 2007 .

[20]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[21]  Guillaume Munch-Maccagnoni Focalisation and Classical Realisability , 2009, CSL.

[22]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[23]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[24]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[25]  Delia Kesner,et al.  A nonstandard standardization theorem , 2014, POPL.

[26]  Dale Miller,et al.  Focusing and Polarization in Intuitionistic Logic , 2007, CSL.