暂无分享,去创建一个
Barnabás Póczos | Jeff G. Schneider | Siamak Ravanbakhsh | Junier B. Oliva | Shirley Ho | Sebastian Fromenteau | Layne Price | J. Schneider | B. Póczos | S. Ho | Siamak Ravanbakhsh | S. Fromenteau | L. Price | Layne Price
[1] Pascal Vincent,et al. Visualizing Higher-Layer Features of a Deep Network , 2009 .
[2] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[3] Scott Croom,et al. The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.
[4] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[5] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[6] G. Lazarides. Introduction to Cosmology , 1999 .
[7] Konstantinos Kamnitsas,et al. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI , 2015 .
[8] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[9] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[10] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[11] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[12] Max Welling,et al. Learning the Irreducible Representations of Commutative Lie Groups , 2014, ICML.
[13] Pedro M. Domingos,et al. Deep Symmetry Networks , 2014, NIPS.
[14] Yoshua. Bengio,et al. Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..
[15] R. Wilson. Modern Cosmology , 2004 .
[16] Pablo Fosalba,et al. ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method , 2015, 1509.04685.
[17] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[18] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[19] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[20] B. Laurent. Efficient estimation of integral functionals of a density , 1996 .
[21] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[22] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[23] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[24] Sergey Ioffe,et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.
[25] Andrew L. Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .
[26] H. Trac,et al. SCORCH. I. THE GALAXY–HALO CONNECTION IN THE FIRST BILLION YEARS , 2015, 1507.02685.
[27] Barnabás Póczos,et al. Distribution-Free Distribution Regression , 2013, AISTATS.
[28] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[29] Andrew Zisserman,et al. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.
[30] Barnabás Póczos,et al. Fast Distribution To Real Regression , 2013, AISTATS.
[31] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[32] Ronald M. Summers,et al. Deep convolutional networks for pancreas segmentation in CT imaging , 2015, Medical Imaging.
[33] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[34] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[35] Felipe Marin,et al. Fast and accurate mock catalogue generation for low-mass galaxies , 2015, 1507.05329.
[36] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[37] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[38] Yu. I. Ingster,et al. Estimation and detection of functions from anisotropic Sobolev classes , 2011 .
[39] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[40] Matias Zaldarriaga,et al. Solving large scale structure in ten easy steps with COLA , 2013, 1301.0322.
[41] Nitish Srivastava,et al. Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.
[42] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.