Energy generalized LVQ with relevance factors

Input feature ranking and selection represent a necessary preprocessing stage in classification, especially when one is required to manage large quantities of data. We introduce a weighted generalized LVQ algorithm, called energy generalized relevance LVQ (EGRLVQ), based on the Onicescu's informational energy. EGRLVQ is an incremental learning algorithm for supervised classification and feature ranking.

[1]  G. Battail Théorie de l'information , 1982, Électronique.

[2]  Thomas Villmann,et al.  Estimating Relevant Input Dimensions for Self-organizing Algorithms , 2001, WSOM.

[3]  Chong-Ho Choi,et al.  Input feature selection for classification problems , 2002, IEEE Trans. Neural Networks.

[4]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[5]  Atsushi Sato,et al.  Generalized Learning Vector Quantization , 1995, NIPS.

[6]  Kari Torkkola,et al.  Feature Extraction by Non-Parametric Mutual Information Maximization , 2003, J. Mach. Learn. Res..

[7]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[8]  Angel Cataron,et al.  An informational energy LVQ approach for feature ranking , 2004, ESANN.

[9]  Anita Patil-Deshmukh,et al.  Maps , 1992 .

[10]  Sankar K. Pal,et al.  Feature analysis: Neural network and fuzzy set theoretic approaches , 1997, Pattern Recognit..

[11]  Thomas Villmann,et al.  Supervised Neural Gas with General Similarity Measure , 2005, Neural Processing Letters.

[12]  Thomas Villmann,et al.  On the Generalization Ability of GRLVQ Networks , 2005, Neural Processing Letters.

[13]  Kari Torkkola,et al.  On feature extraction by mutual information maximization , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  A. Cataron,et al.  RLVQ determination using OWA operators , 2003 .

[15]  Panu Somervuo,et al.  Self-Organizing Maps and Learning Vector Quantization for Feature Sequences , 1999, Neural Processing Letters.

[16]  Silviu Guiaşu,et al.  Information theory with applications , 1977 .

[17]  Barbara Hammer,et al.  Relevance determination in Learning Vector Quantization , 2001, ESANN.

[18]  Gert Pfurtscheller,et al.  Distinction Sensitive Learning Vector Quantisation-a new noise-insensitive classification method , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[19]  Thomas Villmann,et al.  Generalized relevance learning vector quantization , 2002, Neural Networks.

[20]  Gert Pfurtscheller,et al.  Automated feature selection with a distinction sensitive learning vector quantizer , 1996, Neurocomputing.

[21]  Tommy W. S. Chow,et al.  Searching optimal feature subset using mutual information , 2003, ESANN.

[22]  Teuvo Kohonen,et al.  Improved versions of learning vector quantization , 1990, 1990 IJCNN International Joint Conference on Neural Networks.