The partitioning of the inner and outer Solar System by a structured protoplanetary disk

[1]  A. Johansen,et al.  How planetary growth outperforms migration , 2018, Astronomy & Astrophysics.

[2]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks , 2018, The Astrophysical Journal.

[3]  F. Ménard,et al.  Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region , 2018, The Astrophysical Journal.

[4]  S. Okuzumi,et al.  Impacts of Dust Feedback on a Dust Ring Induced by a Planet in a Protoplanetary Disk , 2018, The Astrophysical Journal.

[5]  Jonathan P. Williams,et al.  Rings and Gaps in Protoplanetary Disks: Planets or Snowlines? , 2018, The Astrophysical Journal.

[6]  S. Quanz,et al.  The formation of Jupiter by hybrid pebble–planetesimal accretion , 2018, Nature Astronomy.

[7]  S. Ida,et al.  The curious case of Mars’ formation , 2018, Astronomy & Astrophysics.

[8]  Austria,et al.  Early evolution of viscous and self-gravitating circumstellar disks with a dust component , 2018, Astronomy & Astrophysics.

[9]  S. Desch,et al.  The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites , 2017, The Astrophysical Journal Supplement Series.

[10]  C. Ormel,et al.  Catching drifting pebbles II. A stochastic equation of motion for pebbles , 2018 .

[11]  T. Kleine,et al.  Age of Jupiter inferred from the distinct genetics and formation times of meteorites , 2017, Proceedings of the National Academy of Sciences.

[12]  S. Ida,et al.  N-body simulations of planet formation via pebble accretion I: First Results , 2017, 1705.04264.

[13]  Jia-ling Wang,et al.  Lifetime of the solar nebula constrained by meteorite paleomagnetism , 2017, Science.

[14]  N. Dauphas The isotopic nature of the Earth’s accreting material through time , 2017, Nature.

[15]  T. Birnstiel,et al.  Can dead zones create structures like a transition disk , 2016, 1610.02044.

[16]  T. Guillot,et al.  The radial dependence of pebble accretion rates: A source of diversity in planetary systems I. Analytical formulation , 2016, 1604.01291.

[17]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[18]  S. Ida,et al.  On the water delivery to terrestrial embryos by ice pebble accretion , 2015, 1512.02414.

[19]  W. Bottke,et al.  Growing the terrestrial planets from the gradual accumulation of submeter-sized objects , 2015, Proceedings of the National Academy of Sciences.

[20]  A. Johansen,et al.  Fossilized condensation lines in the Solar System protoplanetary disk , 2015, 1511.06556.

[21]  M. Duncan,et al.  Growing the gas-giant planets by the gradual accumulation of pebbles , 2015, Nature.

[22]  J. Tobin,et al.  A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP , 2015, 1508.01003.

[23]  R. Korotev,et al.  Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475 , 2015 .

[24]  Q. Yin,et al.  Chromium isotopic systematics of the Sutter's Mill carbonaceous chondrite: Implications for isotopic heterogeneities of the early solar system , 2014 .

[25]  R. Nelson,et al.  On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs , 2014, 1408.6993.

[26]  A. Johansen,et al.  Separating gas-giant and ice-giant planets by halting pebble accretion , 2014, 1408.6087.

[27]  N. Dauphas,et al.  60Fe–60Ni chronology of core formation in Mars , 2014, 1401.1830.

[28]  R. Nelson,et al.  On the corotation torque for low-mass eccentric planets , 2013, 1310.0351.

[29]  D. Lin,et al.  TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS , 2013, 1307.6450.

[30]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[31]  B. Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2014, 1405.6336.

[32]  N. Dauphas,et al.  Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk , 2012, 1212.1490.

[33]  T. Elliott,et al.  NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES , 2012 .

[34]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[35]  Andrew M. Davis,et al.  The proto-Earth as a significant source of lunar material , 2012 .

[36]  T. Elliott,et al.  Confirmation of mass-independent Ni isotopic variability in iron meteorites , 2011 .

[37]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[38]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[39]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[40]  M. Gounelle,et al.  THE CHROMIUM ISOTOPIC COMPOSITION OF THE UNGROUPED CARBONACEOUS CHONDRITE TAGISH LAKE , 2011 .

[41]  M. Bizzarro,et al.  EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK , 2011 .

[42]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[43]  C. Baruteau,et al.  A torque formula for non-isothermal Type I planetary migration – II. Effects of diffusion , 2010, 1007.4964.

[44]  C. Ormel,et al.  The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks , 2010, 1007.0916.

[45]  R. Carlson,et al.  The chromium isotopic composition of Almahata Sitta , 2010 .

[46]  R. Carlson,et al.  Contributors to chromium isotope variation of meteorites , 2010 .

[47]  C.,et al.  Mn/Cr systematics: A tool to discriminate the origin of primitive meteorites? , 2010 .

[48]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[49]  C. Göpel,et al.  53Mn–53Cr systematics of the early Solar System revisited , 2008 .

[50]  T. Elliott,et al.  Nickel isotope heterogeneity in the early Solar System , 2008 .

[51]  A. Davis,et al.  Iron 60 Evidence for Early Injection and Efficient Mixing of Stellar Debris in the Protosolar Nebula , 2008, 0805.2607.

[52]  R. Nelson,et al.  Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc , 2008, 0811.4322.

[53]  R. Clayton,et al.  Oxygen Isotopic Composition and Chemical Correlations in Meteorites and the Terrestrial Planets , 2008 .

[54]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[55]  Harold F. Levison,et al.  Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture , 2007, 0706.1713.

[56]  D. Lin,et al.  Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks , 2007, 0706.1272.

[57]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[58]  P. Garaud,et al.  The Effect of Internal Dissipation and Surface Irradiation on the Structure of Disks and the Location of the Snow Line around Sun-like Stars , 2006, astro-ph/0605110.

[59]  A. Shukolyukov,et al.  Manganese–chromium isotope systematics of carbonaceous chondrites , 2006 .

[60]  Hidekazu Tanaka,et al.  Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves , 2004 .

[61]  William R. Ward,et al.  Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration , 2002 .

[62]  R. Clayton,et al.  Los Angeles: The Most Differentiated Basaltic Martian Meteorite , 2000 .

[63]  Masahiro Ikoma,et al.  Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity , 2000 .

[64]  C. Pillinger,et al.  The oxygen‐isotopic composition of Earth and Mars , 1999 .

[65]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[66]  L. Hartmann,et al.  Accretion and the Evolution of T Tauri Disks , 1998 .

[67]  R. Clayton,et al.  Oxygen isotope studies of achondrites , 1996 .

[68]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[69]  Hiroshi Nakai,et al.  Symplectic integrators and their application to dynamical astronomy , 1990 .

[70]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[71]  R. Clayton,et al.  Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites , 1983 .

[72]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[73]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .