Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys

AbstractVarious theoretical dendrite and cell spacing formulas have been tested against experimental data obtained in unsteady- and steady-state heat flow conditions. An iterative assessment strategy satisfactorily overcomes the circumstances that certain constitutive parameters are inadequately established and/or highly variable and that many of the data sets, in terms of gradients, velocities, and/or cooling rates, are unreliable. The accessed unsteady- and steady-state observations on near-terminal binary alloys for primary and secondary spacings were first examined within conventional power law representations, the deduced exponents and confidence limits for each alloy being tabularly recorded. Through this analysis, it became clear that to achieve predictive generality the many constitutive parameters must be included in a rational way, this being achievable only through extant or new theoretical formulations. However, in the case of primary spacings, all formulas, including our own, failed within the unsteady heat flow algorithm while performing adequately within their steady-state context. An earlier untested, heuristically derived steady-state formula after modification, $$\lambda _1 = 120\left( {\frac{{16X_0^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} G_0 (\varepsilon \sigma )T_M D}}{{(1 - k)m\Delta H G R}}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} $$ ultimately proved its utility in the unsteady regime, and so it is recommended for purposes of predictions for general terminal alloys. For secondary spacings, a Mullins and Sekerka type formula proved from the start to be adequate in both unsteady- and steady-state heat flows, and so it recommends itself in calibrated form, $$\lambda _2 = 12\pi \left( {\frac{{4\sigma }}{{X_0 (1 - k)^2 \Delta H}}\left( {\frac{D}{R}} \right)^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} $$ for future predictions.

[1]  T. Okamoto,et al.  Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys , 1975 .

[2]  S. Tewari,et al.  Side branch morphology and coarsening in directionally solidified Pb-8.4 at. pct Au , 1989 .

[3]  T. Plaskett,et al.  CELL TO DENDRITE TRANSITION IN TIN BASE ALLOYS , 1960 .

[4]  R. Trivedi Interdendritic Spacing: Part II. A Comparison of Theory and Experiment , 1984 .

[5]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[6]  H. Okamoto,et al.  The Au−Pb (Gold−Lead) system , 1984 .

[7]  T. Z. Kattamis,et al.  Dendritic coarsening during solidification , 1972 .

[8]  Wilfried Kurz,et al.  Dendrite growth at the limit of stability: tip radius and spacing , 1981 .

[9]  Andreas Mortensen,et al.  On the rate of dendrite arm coarsening , 1991 .

[10]  J. Hunt,et al.  The measurement of liquid diffusion coefficients in the Al-Cu system using temperature gradient zone melting , 1977 .

[11]  W. Tiller,et al.  The redistribution of solute atoms during the solidification of metals , 1953 .

[12]  B. Chalmers Principles of Solidification , 1964 .

[13]  D. Turnbull Isothermal Rate of Solidification of Small Droplets of Mercury and Tin , 1950 .

[14]  M. Taha Some observations on dendritic morphology and dendrite arm spacings , 1979 .

[15]  J. S. Kirkaldy,et al.  Thin film forced velocity cells and cellular dendrites—I. Experiments , 1995 .

[16]  R. Trivedi,et al.  Primary dendrite spacing: Part II. Experimental studies of Pb-Pd and Pb-Au alloys , 1984 .

[17]  I. Karakaya,et al.  The Pb−Sn (Lead-Tin) system , 1988 .

[18]  G. S. Cole,et al.  Experimental observations of dendritic growth , 1972 .

[19]  J. Dutkiewicz,et al.  The Cd-Zn (Cadmium-Zinc) system , 1984 .

[20]  Joanne L. Murray,et al.  The Al-Si (Aluminum-Silicon) system , 1984 .

[21]  R. M. Sharp,et al.  Solute distributions at non-planar, solid-liquid growth fronts: I. Steady-state conditions , 1970 .

[22]  D. Hebditch,et al.  Macroscopic stability of a planar, cellular or dendritic interface during directional freezing , 1973 .

[23]  R. Trivedi,et al.  Primary dendrite spacing of lead dendrites in Pb-Sn and Pb-Au Alloys , 1980 .

[24]  R. Sekerka,et al.  Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[25]  D. Bouchard,et al.  Scaling of intragranuiar dendritic microstructure in ingot solidification , 1996 .

[26]  A. Pelton,et al.  The Pb−Sb (Lead-Antimony) system , 1981 .

[27]  J. S. Kirkaldy,et al.  Thin film forced velocity cells and cellular dendrites—II. Analysis of data , 1995 .

[28]  G. Bolling,et al.  Arrayed dendritic growth , 1974 .

[29]  Zbigniew Moser,et al.  The Sn−Zn (Tin-Zinc) system , 1985 .

[30]  M. Gündüz,et al.  The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems , 1985 .

[31]  J. S. Kirkaldy,et al.  Systematics of thin film cellular dendrites and the cell-to-dendrite transition in succinonitrile-salol, succinonitrile-acetone and pivalic acid-ethanol , 1994 .

[32]  G. Belton,et al.  The diffusion of carbon in iron-carbon alloys at 1560°C , 1974, Metallurgical and Materials Transactions B.

[33]  K. Young,et al.  The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions , 1975 .

[34]  J. Kirkaldy,et al.  Pattern selection relations for deep-rooted binary alloy cells , 1989 .

[35]  D. G. McCartney,et al.  Measurements of cell and primary dendrite arm spacings in directionally solidified aluminium alloys , 1981 .

[36]  A. Mcalister The Ag−Al (Silver-Aluminum) system , 1987 .

[37]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .

[38]  J. Hunt,et al.  Some observations on primary dendrite spacings , 1976 .

[39]  Yutaka Nagaoka,et al.  On Secondary Dendrite Arm Spacing in Commercial Carbon Steels with Different Carbon Content , 1968 .

[40]  A. Mcalister,et al.  The Al−Sn (Aluminum-Tin) System , 1983 .

[41]  R. Trivedi,et al.  Primary dendrite spacing I. Experimental studies , 1982 .

[42]  D. G. McCartney,et al.  A finite element model of alloy solidification incorporating velocity-dependent growth temperatures , 1988 .

[43]  D. H. Kirkwood,et al.  A simple model for dendrite arm coarsening during solidification , 1985 .

[44]  J. Crank Free and moving boundary problems , 1984 .

[45]  P. Voorhees,et al.  Solution to the multi-particle diffusion problem with applications to Ostwald ripening—I. Theory , 1984 .

[46]  H. Giller,et al.  Cellular growth: The relation between growth velocity and cell size of some alloys of cadmium and zinc , 1970 .

[47]  W. Tiller,et al.  THE EFFECT OF GROWTH CONDITIONS UPON THE SOLIDIFICATION OF A BINARY ALLOY , 1956 .

[48]  P. Liley,et al.  Thermal Conductivity of the Elements: A Comprehensive Review , 1974 .