Exploring 3D DTI Fiber Tracts with Linked 2D Representations

We present a visual exploration paradigm that facilitates navigation through complex fiber tracts by combining traditional 3D model viewing with lower dimensional representations. To this end, we create standard streamtube models along with two two-dimensional representations, an embedding in the plane and a hierarchical clustering tree, for a given set of fiber tracts. We then link these three representations using both interaction and color obtained by embedding fiber tracts into a perceptually uniform color space. We describe an anecdotal evaluation with neuroscientists to assess the usefulness of our method in exploring anatomical and functional structures in the brain. Expert feedback indicates that, while a standalone clinical use of the proposed method would require anatomical landmarks in the lower dimensional representations, the approach would be particularly useful in accelerating tract bundle selection. Results also suggest that combining traditional 3D model viewing with lower dimensional representations can ease navigation through the complex fiber tract models, improving exploration of the connectivity in the brain.

[1]  Eric N. Wiebe,et al.  Performance of 2D versus 3D Topographic Representations for Different Task Types , 2004 .

[2]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[3]  Brian A. Wandell,et al.  800Exploration of the brain's white matter pathways with dynamic queries , 2004, IEEE Visualization 2004.

[4]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[5]  David Akers,et al.  Wizard of Oz for participatory design: inventing a gestural interface for 3D selection of neural pathway estimates , 2006, CHI Extended Abstracts.

[6]  W. Eric L. Grimson,et al.  Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI , 2005, MICCAI.

[7]  Rosane Minghim,et al.  On Improved Projection Techniques to Support Visual Exploration of Multi-Dimensional Data Sets , 2003, Inf. Vis..

[8]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[9]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[10]  T. Ertl,et al.  Interactive exploration of unsteady 3D flow with linked 2D/3D texture advection , 2005, Coordinated and Multiple Views in Exploratory Visualization (CMV'05).

[11]  Tim Pattison,et al.  View Coordination Architecture for Information Visualisation , 2001, InVis.au.

[12]  E. Kuntsche,et al.  Multivariate Analysemethoden: Eine anwendungsorientierte Einführung. , 2001 .

[13]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[14]  Hans Hinterberger,et al.  Comparative multivariate visualization across conceptually different graphic displays , 1994, Seventh International Working Conference on Scientific and Statistical Database Management.

[15]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[16]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[17]  Carl-Fredrik Westin,et al.  QUANTITATIVE EXAMINATION OF A NOVEL CLUSTERING METHOD USING MAGNETIC RESONANCE DIFFUSION TENSOR TRACTOGRAPHY , 2008 .

[18]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[19]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[20]  Carl-Fredrik Westin,et al.  Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps , 2003, EUROCAST.

[21]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[22]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[23]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[24]  Chris North,et al.  A Taxonomy of Multiple Window Coordinations , 1998 .

[25]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[26]  Andy Cockburn,et al.  Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments , 2002, CHI.

[27]  Jonathan C. Roberts,et al.  A coordination model for exploratory multiview visualization , 2003, Proceedings International Conference on Coordinated and Multiple Views in Exploratory Visualization - CMV 2003 -.

[28]  Matthew Chalmers,et al.  A linear iteration time layout algorithm for visualising high-dimensional data , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[29]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[30]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[31]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[32]  D. Laidlaw,et al.  Similarity Coloring of DTI Fiber Tracts , 2009 .

[33]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[34]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[35]  Bernice E. Rogowitz,et al.  WEAVE: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data , 2000 .

[36]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[37]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[38]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[39]  Ben Shneiderman,et al.  Designing the user interface - strategies for effective human-computer interaction, 3rd Edition , 1997 .

[40]  Matthew Chalmers,et al.  A Pivot-Based Routine for Improved Parent-Finding in Hybrid MDS† , 2004, Inf. Vis..

[41]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[42]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.