An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection
暂无分享,去创建一个
Stefania Matteoli | Marco Diani | Giovanni Corsini | Nicola Acito | G. Corsini | M. Diani | S. Matteoli | N. Acito
[1] Bea Thai,et al. Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[2] Sean Murphy,et al. A new approach to anomaly detection in hyperspectral images , 2003, SPIE Defense + Commercial Sensing.
[3] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[4] Charles W. Therrien,et al. Discrete Random Signals and Statistical Signal Processing , 1992 .
[5] José M. Bioucas-Dias,et al. Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.
[6] Louis L. Scharf,et al. Matched subspace detectors , 1994, IEEE Trans. Signal Process..
[7] P. Switzer,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .
[8] Gary A. Shaw,et al. Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..
[9] Chein-I Chang,et al. Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis , 2005, IEEE Trans. Geosci. Remote. Sens..
[10] Chein-I Chang,et al. Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[11] Mehrdad Soumekh,et al. Hyperspectral anomaly detection within the signal subspace , 2006, IEEE Geoscience and Remote Sensing Letters.
[12] Stefania Matteoli,et al. Local approach to orthogonal subspace-based target detection in hyperspectral images , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.
[13] R. E. Roger. Principal Components transform with simple, automatic noise adjustment , 1996 .
[14] Marco Diani,et al. A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components , 2009, IEEE Transactions on Geoscience and Remote Sensing.
[15] José M. P. Nascimento,et al. Signal subspace identification in hyperspectral imagery , 2012 .
[16] Gary A. Shaw,et al. Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .
[17] D. Manolakis,et al. Detection algorithms for hyperspectral imaging applications: a signal processing perspective , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.
[18] John F. Arnold,et al. Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .
[19] Y. Selen,et al. Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.
[20] M. E. Winter. Comparison of approaches for determining end-members in hyperspectral data , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).
[21] Heesung Kwon,et al. Adaptive anomaly detection using subspace separation for hyperspectral imagery , 2003 .
[22] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[23] Heesung Kwon,et al. Kernel orthogonal subspace projection for hyperspectral signal classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.