THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS

High-redshift gamma-ray bursts (GRBs) offer an extraordinary opportunity to study aspects of the early universe, including the cosmic star formation rate (SFR). Motivated by the two recent highest-z GRBs, GRB 080913 at z 6.7 and GRB 090423 at z 8.1, and more than four years of Swift observations, we first confirm that the GRB rate does not trace the SFR in an unbiased way. Correcting for this, we find that the implied SFR to beyond z = 8 is consistent with Lyman Break Galaxy-based measurements after accounting for unseen galaxies at the faint end of the UV luminosity function. We show that this provides support for the integrated star formation in the range 6 z 8 to have been alone sufficient to reionize the universe.

[1]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[2]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[3]  Ranga-Ram Chary,et al.  Spitzer Constraints on the z = 6.56 Galaxy Lensed by Abell 370 , 2005, astro-ph/0510827.

[4]  Kentaro Aoki,et al.  Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.

[5]  John F. Beacom,et al.  An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.

[6]  Cristiano Porciani,et al.  On the Association of Gamma-Ray Bursts with Massive Stars: Implications for Number Counts and Lensing Statistics , 2001 .

[7]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[8]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[9]  Donald Q. Lamb,et al.  Gamma-Ray Bursts as a Probe of the Very High Redshift Universe , 2000 .

[10]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[11]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[12]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[13]  N. Langer,et al.  On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.

[14]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[15]  Boulder,et al.  The redshift distribution of Swift gamma‐ray bursts: evidence for evolution , 2006, astro-ph/0607618.

[16]  James S. Bolton,et al.  The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007 .

[17]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[18]  Charles D. Dermer,et al.  On the Redshift Distribution of Gamma-Ray Bursts in the Swift Era , 2006, astro-ph/0610043.

[19]  M. Dopita,et al.  A glimpse of the end of the dark ages: the gamma-ray burst of 23 April 2009 at redshift 8.3 , 2009, 0906.1577.

[20]  R. Cen,et al.  The Extended Star Formation History of the First Generation of Stars and the Reionization of Cosmic Hydrogen , 2006, astro-ph/0602503.

[21]  Constraining the quasar contribution to the reionization of cosmic hydrogen , 2006, astro-ph/0610306.

[22]  Enhanced cosmological GRB rates and implications for cosmogenic neutrinos , 2006, astro-ph/0610481.

[23]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[24]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[25]  S. Mereghetti,et al.  Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? , 2003, astro-ph/0301149.

[26]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[27]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[28]  David L. Band,et al.  Postlaunch Analysis of Swift’s Gamma-Ray Burst Detection Sensitivity , 2006, astro-ph/0602267.

[29]  Joshua S. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .

[30]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[31]  Nathaniel R. Butler,et al.  A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.

[32]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[33]  R. Windhorst,et al.  The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.

[34]  The gamma-ray burst luminosity function in the light of the Swift 2 year data , 2006, astro-ph/0612278.

[35]  T. Sakamoto,et al.  JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS , 2008, 0812.4780.

[36]  S. Wyithe,et al.  The Fraction of Ionizing Photons Escaping from High-Redshift Galaxies , 2008, Publications of the Astronomical Society of Australia.

[37]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[38]  A. Hopkins,et al.  Determining the escape fraction of ionizing photons during reionization with the GRB-derived star formation rate , 2009, 0908.0193.

[39]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[40]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[41]  A. J. Levan,et al.  GRB 080913 AT REDSHIFT 6.7 , 2008, 0810.2314.

[42]  Andrew M. Hopkins,et al.  Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.

[43]  J. Bloom Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant? , 2003, astro-ph/0302249.

[44]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[45]  M. M. Kasliwal,et al.  THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST SWIFT GAMMA-RAY BURSTS , 2009, 0905.0690.

[46]  A. Loeb,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE EXPECTED REDSHIFT DISTRIBUTION OF GAMMA-RAY BURSTS , 2002 .

[47]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.