Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes

[1]  C. Dumas,et al.  DSA to grow electrochemically active biofilms of Geobacter sulfurreducens , 2008 .

[2]  Leonard M Tender,et al.  Effect of electrode potential on electrode-reducing microbiota. , 2006, Environmental science & technology.

[3]  Derek R Lovley,et al.  Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. , 2006, Environmental microbiology.

[4]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Stefano Freguia,et al.  Microbial fuel cells: methodology and technology. , 2006, Environmental science & technology.

[6]  Derek R. Lovley,et al.  Bug juice: harvesting electricity with microorganisms , 2006, Nature Reviews Microbiology.

[7]  D. Lowy,et al.  Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. , 2006, Biosensors & bioelectronics.

[8]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[9]  W. Verstraete,et al.  Microbial fuel cells: novel biotechnology for energy generation. , 2005, Trends in biotechnology.

[10]  W. Verstraete,et al.  Microbial phenazine production enhances electron transfer in biofuel cells. , 2005, Environmental science & technology.

[11]  Hong Liu,et al.  Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. , 2005, Environmental science & technology.

[12]  D. R. Bond,et al.  Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell , 2004, Applied and Environmental Microbiology.

[13]  W. Verstraete,et al.  Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer , 2004, Applied and Environmental Microbiology.

[14]  Derek R Lovley,et al.  Graphite electrodes as electron donors for anaerobic respiration. , 2004, Environmental microbiology.

[15]  D. Lovley,et al.  Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells , 2003, Nature Biotechnology.

[16]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. , 2003, FEMS microbiology letters.

[17]  Youngjin Choi,et al.  Membrane fluidity sensoring microbial fuel cell. , 2003, Bioelectrochemistry.

[18]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[19]  Youngjin Choi,et al.  Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. , 2002, Bioelectrochemistry.

[20]  D. R. Bond,et al.  Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments , 2002, Science.

[21]  Byung Hong Kim,et al.  A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell , 2001 .

[22]  John D. Brooks,et al.  Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci , 2000 .

[23]  Claire Dumas,et al.  Microbial electrocatalysis with Geobacter sulfurreducensbiofilm on stainless steel cathodes , 2008 .

[24]  Eun Jeong Cho,et al.  Optimization of the biological component of a bioelectrochemical cell. , 2007, Bioelectrochemistry.