Anomalous errors of direct scattering transform.

Theory of direct scattering transform for nonlinear wave fields containing solitons is revisited to overcome fundamental difficulties hindering its stable numerical implementation. With the focusing one-dimensional nonlinear Schrödinger equation serving as a model, we study a crucial fundamental property of the scattering problem for multisoliton potentials demonstrating that in many cases phase and space position parameters of solitons cannot be identified with standard machine precision arithmetics making solitons in some sense "uncatchable." Using the dressing method we find the landscape of soliton scattering coefficients in the plane of the complex spectral parameter for multisoliton wave fields truncated within a finite domain, allowing us to capture the nature of such anomalous numerical errors. They depend on the size of the computational domain L leading to a counterintuitive exponential divergence when increasing L in the presence of a small uncertainty in soliton eigenvalues. Then we demonstrate how one of the scattering coefficients loses its analytical properties due to the lack of the wave-field compact support in case of L→∞. Finally, we show that despite this inherent direct scattering transform feature, the wave fields of arbitrary complexity can be reliably analysed using high-precision arithmetics even in the presence of noise opening broad perspectives in nonlinear physics.

[1]  Osborne,et al.  Soliton basis states in shallow-water ocean surface waves. , 1991, Physical review letters.

[2]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[3]  P. Suret,et al.  Statistical Properties of the Nonlinear Stage of Modulation Instability in Fiber Optics. , 2019, Physical review letters.

[4]  J. K. Shaw,et al.  Purely imaginary eigenvalues of Zakharov-Shabat systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  P. Suret,et al.  Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments. , 2018, Physical review. E.

[6]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[7]  Sergei K. Turitsyn,et al.  Soliton-based discriminator of noncoherent optical pulses , 2008 .

[8]  Jaroslaw E Prilepsky,et al.  Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels. , 2014, Physical review letters.

[9]  A. Vasylchenkova,et al.  Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[10]  Sander Wahls,et al.  Soliton Phase Shift Calculation for the Korteweg–De Vries Equation , 2019, IEEE Access.

[11]  V. Zakharov,et al.  Bound State Soliton Gas Dynamics Underlying the Spontaneous Modulational Instability. , 2019, Physical review letters.

[12]  Sitai Li,et al.  Auto-modulation versus breathers in the nonlinear stage of modulational instability. , 2018, Optics letters.

[13]  A. Mussot,et al.  Solitonization of a dispersive wave. , 2016, Optics letters.

[14]  Sergei K. Turitsyn,et al.  Nonlinear Fourier Transform for Optical Data Processing and Transmission: Advances and Perspectives , 2017, 2018 European Conference on Optical Communication (ECOC).

[15]  S. K. Turitsyn,et al.  New approaches to coding information using inverse scattering transform , 2017, Physical review letters.

[16]  A. Gelash,et al.  Strongly interacting soliton gas and formation of rogue waves , 2018, Physical Review E.

[17]  Igor Chekhovskoy,et al.  Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem. , 2019, Optics letters.

[18]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[19]  Vladimir E. Zakharov,et al.  Turbulence in Integrable Systems , 2009 .

[20]  E. Pelinovsky,et al.  Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework. , 2016, Physical review letters.

[21]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[22]  V. Zakharov,et al.  Integrable turbulence generated from modulational instability of cnoidal waves , 2015, 1512.06332.

[23]  A. R. Osborne Soliton physics and the periodic inverse scattering transform , 1995 .

[24]  Majid Safari,et al.  Capacity Analysis of Signaling on the Continuous Spectrum of Nonlinear Optical Fibers , 2017, Journal of Lightwave Technology.

[25]  A. Slunyaev Analysis of the Nonlinear Spectrum of Intense Sea Wave with the Purpose of Extreme Wave Prediction , 2018 .

[26]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[27]  Alexey Slunyaev Nonlinear analysis and simulations of measured freak wave time series , 2006 .

[28]  Jaroslaw E Prilepsky,et al.  Contour integrals for numerical computation of discrete eigenvalues in the Zakharov-Shabat problem. , 2018, Optics letters.

[29]  W. Perrie,et al.  Nonlinear Ocean Waves , 1997 .

[30]  N Akhmediev,et al.  Integrable Turbulence and Rogue Waves: Breathers or Solitons? , 2016, Physical review letters.

[31]  S. Trillo,et al.  Quantitative approach to breather pair appearance in nonlinear modulational instability. , 2019, Optics letters.

[32]  A. Osborne,et al.  The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves , 1995 .

[33]  A. Gelash Formation of rogue waves from a locally perturbed condensate. , 2017, Physical review. E.

[34]  V. E. Zakharov,et al.  Integrable turbulence and formation of rogue waves , 2014, 1409.4692.

[35]  P. Suret,et al.  Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency , 2015, 1509.06556.

[36]  Sergey Medvedev,et al.  Exponential Fourth Order Schemes for Direct Zakharov-Shabat problem , 2019, Optics express.

[37]  A. Osborne,et al.  Computation of the direct scattering transform for the nonlinear Schroedinger equation , 1992 .

[38]  D. H. Peregrine,et al.  Water waves, nonlinear Schrödinger equations and their solutions , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[39]  S. Burtsev,et al.  Numerical Algorithms for the Direct Spectral Transform with Applications to Nonlinear Schrödinger Type Systems , 1998 .

[40]  R. Beyer,et al.  Soviet Physics—JETP , 1960 .

[41]  Frank R. Kschischang,et al.  Information Transmission Using the Nonlinear Fourier Transform, Part I: Mathematical Tools , 2012, IEEE Transactions on Information Theory.

[42]  Mansoor I. Yousefi,et al.  Nonlinear Frequency Division Multiplexed Transmissions Based on NFT , 2015, IEEE Photonics Technology Letters.

[43]  Vishal Vaibhav,et al.  Higher Order Convergent Fast Nonlinear Fourier Transform , 2017, IEEE Photonics Technology Letters.

[44]  J. Bronski Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem , 1996 .

[45]  Vahid Aref,et al.  Statistics of the Nonlinear Discrete Spectrum of a Noisy Pulse , 2019, Journal of Lightwave Technology.

[46]  V. Vaibhav,et al.  Exact solution of the Zakharov-Shabat scattering problem for doubly-truncated multisoliton potentials , 2017, Commun. Nonlinear Sci. Numer. Simul..

[47]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[48]  Mikhail P. Fedoruk,et al.  Conservative multi-exponential scheme for solving the direct Zakharov-Shabat scattering problem. , 2020, Optics letters.

[49]  E. Podivilov,et al.  Efficient numerical method for solving the direct Zakharov-Shabat scattering problem , 2015 .

[50]  Rustam Mullyadzhanov,et al.  Direct scattering transform of large wave packets. , 2019, Optics letters.