Generalized Turán problems for disjoint copies of graphs

Given two graphs $H$ and $F$, the maximum possible number of copies of $H$ in an $F$-free graph on $n$ vertices is denoted by $ex(n,H,F)$. We investigate the function $ex(n,H,kF)$, where $kF$ denotes $k$ vertex disjoint copies of a fixed graph $F$. Our results include cases when $F$ is a complete graph, cycle or a complete bipartite graph.

[1]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[2]  Xiao-Dong Zhang,et al.  The Turán number of disjoint copies of paths , 2017, Discret. Math..

[3]  Izolda Gorgol,et al.  Turán Numbers for Disjoint Copies of Graphs , 2011, Graphs Comb..

[4]  Lior Gishboliner,et al.  A generalized Turán problem and its applications , 2017, Electron. Colloquium Comput. Complex..

[5]  Miklós Simonovits,et al.  Compactness results in extremal graph theory , 1982, Comb..

[6]  P. Erdös On an extremal problem in graph theory , 1970 .

[7]  NEAL BUSHAW,et al.  Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.

[8]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[9]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[10]  J. Moon On Independent Complete Subgraphs in a Graph , 1968, Canadian Journal of Mathematics.

[11]  Dániel Gerbner,et al.  Extremal Finite Set Theory , 2018 .

[12]  Dániel Gerbner,et al.  Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..

[13]  Noga Alon,et al.  Many T copies in H-free graphs , 2015, Electron. Notes Discret. Math..

[14]  Cory Palmer,et al.  Counting copies of a fixed subgraph in F-free graphs , 2018, Eur. J. Comb..

[15]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[16]  Miklós Simonovits,et al.  Paul Erdős' Influence on Extremal Graph Theory , 2013, The Mathematics of Paul Erdős II.

[17]  Cory Palmer,et al.  General lemmas for Berge-Turán hypergraph problems , 2018, Eur. J. Comb..

[18]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[19]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[20]  Ervin Györi,et al.  Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.