Subarray-SHORT De-Embedding for Improving Accuracy of On-Wafer Measurements of Devices for Millimeter and Submillimeter-Wave Applications

A de-embedding technique for high-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> or high-cutoff frequency (<inline-formula> <tex-math notation="LaTeX">$f_{\mathrm {T}}$ </tex-math></inline-formula>) one-port structures such as metal–oxide– semiconductor (MOS) varactors and Schottky diodes for millimeter- and submillimeter-wave applications is proposed to mitigate the limitation of vector network analyses of structures with a large ratio between the <inline-formula> <tex-math notation="LaTeX">$\vert $ </tex-math></inline-formula>reactance<inline-formula> <tex-math notation="LaTeX">$\vert $ </tex-math></inline-formula> and resistance (<inline-formula> <tex-math notation="LaTeX">$\vert X\vert /R)$ </tex-math></inline-formula>. A subarray with a fewer number of cells of the device under test that has a lower <inline-formula> <tex-math notation="LaTeX">$\vert X\vert /R$ </tex-math></inline-formula> is used instead of an ultrahigh-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> OPEN structure for de-embedding. This technique provides more accurate measurements of cutoff frequency (<inline-formula> <tex-math notation="LaTeX">$f_{\mathrm {T}}$ </tex-math></inline-formula>). The resulting average of %-variations of measured <inline-formula> <tex-math notation="LaTeX">$f_{\mathrm {T}}$ </tex-math></inline-formula> and series resistance over the measurement frequency range (50–55 GHz) are decreased by 30%–45%. More importantly, the %-variation range of <inline-formula> <tex-math notation="LaTeX">$f_{\mathrm {T}}$ </tex-math></inline-formula> for the proposed method over samples and frequencies is less than ~20% which is ~50% smaller than the de-embedding using a conventional ultrahigh-<inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> OPEN structure.

[1]  G. Rietveld,et al.  A Novel Calibration Method for Active Interferometer-Based VNAs , 2020, IEEE Microwave and Wireless Components Letters.

[2]  Gert Rietveld,et al.  Noise Behavior and Implementation of Interferometer-Based Broadband VNA , 2019, IEEE Transactions on Microwave Theory and Techniques.

[3]  K. O. Kenneth,et al.  CMOS terahertz receivers , 2018, CICC.

[4]  K. O.,et al.  THz Detection Using p+/n-Well Diodes Fabricated in 45-nm CMOS , 2016, IEEE Electron Device Letters.

[5]  Marco Spirito,et al.  Evaluation and modeling of measurement resolution of a vector network analyzer for extreme impedance measurements , 2015, 2015 86th ARFTG Microwave Measurement Conference.

[6]  K. O. Kenneth,et al.  0.39–0.45THz symmetric MOS-varactor frequency tripler in 65-nm CMOS , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[7]  Ehsan Afshari,et al.  Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel , 2013, IEEE Journal of Solid-State Circuits.

[8]  A. G. Martinez-Lopez,et al.  Impact of Extrinsic Capacitances on FinFET RF Performance , 2013, IEEE Transactions on Microwave Theory and Techniques.

[9]  M. Garelli,et al.  A Unified Theory for $S$-Parameter Uncertainty Evaluation , 2012, IEEE Transactions on Microwave Theory and Techniques.

[10]  S. Voinigescu,et al.  Device and IC Characterization Above 100 GHz , 2012, IEEE Microwave Magazine.

[11]  Karel Hoffmann,et al.  Microwave Impedance Measurement for Nanoelectronics , 2011 .

[12]  L.F. Tiemeijer,et al.  A New 12-Term Open–Short–Load De-Embedding Method for Accurate On-Wafer Characterization of RF MOSFET Structures , 2010, IEEE Transactions on Microwave Theory and Techniques.

[13]  Ruonan Han,et al.  Towards terahertz operation of CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  D. Gloria,et al.  Efficient De-Embedding Technique for 110-GHz Deep-Channel-MOSFET Characterization , 2007, IEEE Microwave and Wireless Components Letters.

[15]  L.F. Tiemeijer,et al.  Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives , 2005, IEEE Transactions on Microwave Theory and Techniques.

[16]  J.A.M. Geelen,et al.  An improved de-embedding technique for on-wafer high-frequency characterization , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.