Inhibition of Rho kinase mediates the neuroprotective effects of estrogen in the MPTP model of Parkinson's disease

[1]  L. Tönges,et al.  Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease , 2012, Brain : a journal of neurology.

[2]  Nicolas Valenzuela,et al.  Performing Vaginal Lavage, Crystal Violet Staining, and Vaginal Cytological Evaluation for Mouse Estrous Cycle Staging Identification , 2012, Journal of visualized experiments : JoVE.

[3]  A. Rodriguez-Perez,et al.  Involvement of microglial RhoA/Rho-Kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors , 2012, Neurobiology of Disease.

[4]  M. Wiles,et al.  Mouse Estrous Cycle Identification Tool and Images , 2012, PloS one.

[5]  Li-Xin Sun,et al.  Nogo‐66 inhibits adhesion and migration of microglia via GTPase Rho pathway in vitro , 2012, Journal of neurochemistry.

[6]  A. Rodriguez-Perez,et al.  Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease , 2012, Journal of Neuroinflammation.

[7]  M. Das,et al.  Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade , 2011, Journal of Neuroinflammation.

[8]  A. Rodriguez-Perez,et al.  Renin angiotensin system and gender differences in dopaminergic degeneration , 2011, Molecular Neurodegeneration.

[9]  Hongxia Liu,et al.  Advanced glycation end products induce moesin phosphorylation in murine brain endothelium , 2011, Brain Research.

[10]  J. Lanciego,et al.  Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease , 2010, Experimental Neurology.

[11]  S. Radowicki,et al.  Simultaneous determination of eight estrogens and their metabolites in serum using liquid chromatography with electrochemical detection. , 2010, Talanta.

[12]  R. Gold,et al.  Small but powerful: Short peptide hormones and their role in autoimmune inflammation , 2009, Journal of Neuroimmunology.

[13]  R. Gold,et al.  Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system , 2009, Proceedings of the National Academy of Sciences.

[14]  A. Sheikh,et al.  Lysophosphatidylcholine induces glial cell activation: Role of rho kinase , 2009, Glia.

[15]  A. Rodriguez-Perez,et al.  The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease , 2009, Journal of neurochemistry.

[16]  A. Maggi,et al.  Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases , 2008, Frontiers in Neuroendocrinology.

[17]  Antony Vinh,et al.  AT2 receptors: Functional relevance in cardiovascular disease , 2008, Pharmacology & Therapeutics.

[18]  J. Parga,et al.  Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS , 2008, Neurobiology of Disease.

[19]  J. Parga,et al.  Mechanism of 6‐hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6‐hydroxydopamine‐induced degeneration of dopaminergic neurons , 2007, Journal of neurochemistry.

[20]  S. Strittmatter,et al.  ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[21]  M. Barton,et al.  Hormone replacement therapy and atherosclerosis in postmenopausal women: does aging limit therapeutic benefits? , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[22]  B. Liu,et al.  OESTROGEN AND NIGROSTRIATAL DOPAMINERGIC NEURODEGENERATION: ANIMAL MODELS AND CLINICAL REPORTS OF PARKINSON'S DISEASE , 2007, Clinical and experimental pharmacology & physiology.

[23]  David A. Bridwell,et al.  Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions , 2007, Proceedings of the National Academy of Sciences.

[24]  J. Labandeira-Garcia,et al.  Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons , 2007, Neurobiology of Aging.

[25]  Xuefan Gu,et al.  Phenylalanine activates the mitochondria‐mediated apoptosis through the RhoA/Rho‐associated kinase pathway in cortical neurons , 2007, The European journal of neuroscience.

[26]  L. Snell,et al.  Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra , 2007, Molecular Neurodegeneration.

[27]  P. Ragonese,et al.  Age at menopause predicts age at onset of Parkinson's disease , 2006, Movement disorders : official journal of the Movement Disorder Society.

[28]  S. Dunnett,et al.  An investigation of the problem of two-layered immunohistochemical staining in paraformaldehyde fixed sections , 2006, Journal of Neuroscience Methods.

[29]  P. Ragonese,et al.  Implications for Estrogens in Parkinson's Disease , 2006, Annals of the New York Academy of Sciences.

[30]  S. Eguchi,et al.  Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. , 2006, Hypertension.

[31]  Seyhan Sahan-Firat,et al.  Rho-kinase inhibitor, Y-27632, has an antinociceptive effect in mice. , 2006, European journal of pharmacology.

[32]  D. Finkelstein,et al.  Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication , 2006, Brain Research.

[33]  C. Tirolo,et al.  Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: Glia dictates resistance versus vulnerability to neurodegeneration , 2006, Neuroscience.

[34]  Alexander Hammers,et al.  In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease , 2006, Neurobiology of Disease.

[35]  C. Tanner,et al.  Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease , 2005, Neurology.

[36]  Helmut Mack,et al.  Rho kinase, a promising drug target for neurological disorders , 2005, Nature Reviews Drug Discovery.

[37]  M. Febo,et al.  Estrogen Influences Cocaine-Induced Blood Oxygen Level-Dependent Signal Changes in Female Rats , 2005, The Journal of Neuroscience.

[38]  E. Yoshikawa,et al.  Microglial activation and dopamine terminal loss in early Parkinson's disease , 2005, Annals of neurology.

[39]  J. Reckelhoff Sex steroids, cardiovascular disease, and hypertension: unanswered questions and some speculations. , 2005, Hypertension.

[40]  G. Gallo Myosin II activity is required for severing-induced axon retraction in vitro , 2004, Experimental Neurology.

[41]  J. Parga,et al.  Angiotensin II increases differentiation of dopaminergic neurons from mesencephalic precursors via angiotensin type 2 receptors , 2004, The European journal of neuroscience.

[42]  M. Hows,et al.  High-performance liquid chromatography/tandem mass spectrometry assay for the determination of 1-methyl-4-phenyl pyridinium (MPP+) in brain tissue homogenates , 2004, Journal of Neuroscience Methods.

[43]  A. Takeshita,et al.  Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. , 2004, Journal of molecular and cellular cardiology.

[44]  G. Wooten,et al.  Postmenopausal estrogen use affects risk for Parkinson disease. , 2004, Archives of neurology.

[45]  John G. Collard,et al.  RhoA activation promotes transendothelial migration of monocytes via ROCK , 2004, Journal of leukocyte biology.

[46]  T. Herdegen,et al.  Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF‐κB , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  S. Aslam,et al.  Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[48]  Lorene M Nelson,et al.  Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. , 2003, American journal of epidemiology.

[49]  P. Adamson,et al.  Lovastatin inhibits brain endothelial cell Rho‐mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  Wei Zheng,et al.  Estrogen regulates adrenal angiotensin type 1 receptors by modulating adrenal angiotensin levels. , 2003, Endocrinology.

[51]  J. Steeves,et al.  Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates , 2003, Molecular and Cellular Neuroscience.

[52]  D. Dexter,et al.  Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females , 2003, Neuroscience.

[53]  T. Unger Inhibiting angiotensin receptors in the brain: possible therapeutic implications , 2003, Current medical research and opinion.

[54]  L. Shulman Is there a connection between estrogen and Parkinson's disease? , 2002, Parkinsonism & related disorders.

[55]  S. Oparil,et al.  Sex hormones and hypertension. , 2002, Cardiovascular research.

[56]  L. Gollapudi,et al.  Estrogen Effects on Neurite Outgrowth and Cytoskeletal Gene Expression in ERα-Transfected PC12 Cell Lines , 2001, Experimental Neurology.

[57]  Yusuke Suzuki,et al.  Proinflammatory actions of angiotensins , 2001, Current opinion in nephrology and hypertension.

[58]  T. Foster,et al.  Novel effects of estradiol and estrogen receptor α and β on cognitive function 1 1 Published on the World Wide Web on 10 October 2000. , 2000, Brain Research.

[59]  D. Inzitari,et al.  Parkinson’s disease and parkinsonism in a longitudinal study , 2000, Neurology.

[60]  J. Galle,et al.  Differential role of angiotensin II receptor subtypes on endothelial superoxide formation , 2000, British journal of pharmacology.

[61]  S. Satoh,et al.  A New Model of Cerebral Microthrombosis in Rats and the Neuroprotective Effect of a Rho-Kinase Inhibitor , 2000, Stroke.

[62]  J. Verbalis,et al.  Estrogen regulates angiotensin AT1 receptor expression via cytosolic proteins that bind to the 5' leader sequence of the receptor mRNA. , 1999, Endocrinology.

[63]  N. Leclerc,et al.  Inactivation of Rho Signaling Pathway Promotes CNS Axon Regeneration , 1999, The Journal of Neuroscience.

[64]  E. López-Martín,et al.  The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism , 1998, Journal of Neuroscience Methods.

[65]  P. Rosenstiel,et al.  The Angiotensin II Type 2 (AT2) Receptor Promotes Axonal Regeneration in the Optic Nerve of Adult Rats , 1998, The Journal of experimental medicine.

[66]  H. Katoh,et al.  p160 RhoA-binding Kinase ROKα Induces Neurite Retraction* , 1998, The Journal of Biological Chemistry.

[67]  J. Labandeira-Garcia,et al.  An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. , 1997, Brain research. Brain research protocols.

[68]  D. Dluzen Estrogen decreases corpus striatal neurotoxicity in response to 6-hydroxydopamine , 1997, Brain Research.

[69]  G. Rozas,et al.  Drug-free evaluation of rat models of parkinsonism and nigral grafts using a new automated rotarod test , 1997, Brain Research.

[70]  J. Gallo,et al.  Angiotensin II Induction of Neurite Outgrowth by AT2 Receptors in NG108-15 Cells , 1996, The Journal of Biological Chemistry.

[71]  T. Unger,et al.  The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells , 1996, Molecular and Cellular Endocrinology.

[72]  K. Nakao,et al.  ROCK‐I and ROCK‐II, two isoforms of Rho‐associated coiled‐coil forming protein serine/threonine kinase in mice , 1996, FEBS letters.

[73]  T. Dawson,et al.  Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Marder,et al.  The frequency of idiopathic Parkinson's disease by age, ethnic group, and sex in northern Manhattan, 1988-1993. , 1995, American journal of epidemiology.

[75]  Masaki Sugiura,et al.  Angiotensin II Type 1a Receptor-deficient Mice with Hypotension and Hyperreninemia (*) , 1995, The Journal of Biological Chemistry.

[76]  M. Díez,et al.  Rapid high-performance liquid chromatographic assay of ethynyloestradiol in rabbit plasma. , 1993, Journal of chromatography.

[77]  H. J. G. GUNDERSEN,et al.  Some new, simple and efficient stereological methods and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[78]  A. Rodriguez-Perez,et al.  Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. , 2012, Brain : a journal of neurology.

[79]  S. Hallström,et al.  Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture , 2010, Proteomics.

[80]  G. Flouriot,et al.  Different outcomes of unliganded and liganded estrogen receptor-alpha on neurite outgrowth in PC12 cells. , 2009, Endocrinology.

[81]  D. Inzitari,et al.  Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. , 2000, Neurology.

[82]  T. Foster,et al.  Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. , 2000, Brain research.

[83]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[84]  P. Dziuk,et al.  Passage of steroids through silicone rubber. , 1966, Endocrinology.