Kernel-based Nonlinear Observation Method For Sparse Coding

In this paper, efficient algorithms are proposed to perform sparse coding for the features lifted to a high-dimensional space via nonlinear mapping. we developed how the well-known sparse coding algorithm Homotopy Iterative Thresholding(HIHT) algorithm can be made nonlinear with the kernel method. We also put forward the corresponding dictionary learning strategy using the Lagrange dual method. The experimental results we tested prove that the application of the kernel sparse coding in the classification problem is significantly improved compared with their linear counterparts.

[1]  Rama Chellappa,et al.  Kernel dictionary learning , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[3]  Yuanlong Yu,et al.  Sparse coding extreme learning machine for classification , 2017, Neurocomputing.

[4]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[5]  Mohamed S. Kamel,et al.  Kernelized Supervised Dictionary Learning , 2012, IEEE Transactions on Signal Processing.

[6]  Yuanlong Yu,et al.  Sparse coding extreme learning machine for classification , 2017 .

[7]  Michael Elad,et al.  Linearized Kernel Dictionary Learning , 2015, IEEE Journal of Selected Topics in Signal Processing.

[8]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[9]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[10]  Wenxing Zhu,et al.  Homotopy methods based on l 0 norm for the compressed sensing problem , 2014 .

[11]  Rama Chellappa,et al.  Design of Non-Linear Kernel Dictionaries for Object Recognition , 2013, IEEE Transactions on Image Processing.

[12]  Ting Wang,et al.  Kernel Sparse Representation-Based Classifier , 2012, IEEE Transactions on Signal Processing.

[13]  Jason Gu,et al.  A Homotopy Iterative Hard Thresholding Algorithm With Extreme Learning Machine for Scene Recognition , 2018, IEEE Access.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Baba C. Vemuri,et al.  On A Nonlinear Generalization of Sparse Coding and Dictionary Learning , 2013, ICML.

[16]  Zhaosong Lu,et al.  Iterative hard thresholding methods for l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document} regulari , 2012, Mathematical Programming.