Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions

A setup is described for simultaneous three-dimensional manipulation and imaging inside a concentrated colloidal dispersion using (time-shared) optical tweezers and confocal microscopy. The use of two microscope objectives, one above and one below the sample, enables imaging to be completely decoupled from trapping. The instrument can be used in different trapping (inverted, upright, and counterpropagating) and imaging modes. Optical tweezers arrays, dynamically changeable and capable of trapping several hundreds of micrometer-sized particles, were created using acousto-optic deflectors. Several schemes are demonstrated to trap three-dimensional colloidal structures with optical tweezers. One combined a Pockels cell and polarizing beam splitters to create two trapping planes at different depths in the sample, in which the optical traps could be manipulated independently. Optical tweezers were used to manipulate collections of particles inside concentrated colloidal dispersions, allowing control over collo...

[1]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[2]  Clemens Bechinger,et al.  Phase behavior of colloidal molecular crystals on triangular light lattices. , 2002, Physical review letters.

[3]  A. Vrij,et al.  Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres , 1992 .

[4]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[5]  A. Resnick Design and construction of a space-borne optical tweezer apparatus , 2001 .

[6]  G. Brakenhoff,et al.  Single beam optical trapping integrated in a confocal microscope for biological applications. , 1991, Cytometry.

[7]  C. Bechinger,et al.  Density-dependent pair interactions in 2D , 2002 .

[8]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[9]  S. Monajembashi,et al.  Optical tweezers for confocal microscopy , 2000 .

[10]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[11]  David G. Grier,et al.  Annealing thin colloidal crystals with optical gradient forces , 2001 .

[12]  H. M. Nussenzveig,et al.  Theory of optical tweezers , 1999 .

[13]  Alfons van Blaaderen,et al.  Real-Space Structure of Colloidal Hard-Sphere Glasses , 1995, Science.

[14]  J. B. Pendry,et al.  Mie resonances and bonding in photonic crystals , 1997 .

[15]  David W. M. Marr,et al.  Design of a scanning laser optical trap for multiparticle manipulation , 2000 .

[16]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[17]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[18]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[19]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[20]  Toyohiko Yatagai,et al.  Nonmechanical Optical Manipulation of Microparticle Using Spatial Light Modulator , 1999 .

[21]  H. Misawa,et al.  Pattern formation and flow control of fine particles by laser-scanning micromanipulation. , 1991, Optics letters.

[22]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[23]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[24]  A. Blaaderen,et al.  Synthesis and Characterization of Monodisperse Core−Shell Colloidal Spheres of Zinc Sulfide and Silica , 2001 .

[25]  J. Hoogenboom,et al.  Patterning surfaces with colloidal particles using optical tweezers , 2002 .

[26]  Jesper Gluckstad,et al.  Fully dynamic multiple-beam optical tweezers. , 2002, Optics express.

[27]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[28]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[29]  H. Giesche Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process , 1994 .

[30]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[31]  W. Kegel,et al.  Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions , 2000, Science.

[32]  P. Bartlett,et al.  Position correlation microscopy: probing single particle dynamics in colloidal suspensions , 2001 .

[33]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[34]  V. Prasad,et al.  Three-dimensional confocal microscopy of colloids. , 2001, Applied optics.

[35]  Eric J. Brown,et al.  Decreased Resistance to Bacterial Infection and Granulocyte Defects in IAP-Deficient Mice , 1996, Science.

[36]  Jean-Marc R. Fournier,et al.  Writing diffractive structures by optical trapping , 1995, Electronic Imaging.

[37]  M. H. Chestnut Confocal microscopy of colloids , 1997 .

[38]  Alfons van Blaaderen,et al.  Dispersions of Rhodamine-Labeled Silica Spheres: Synthesis, Characterization, and Fluorescence Confocal Scanning Laser Microscopy , 1994 .

[39]  Judy E. Trogadis,et al.  Three-dimensional confocal microscopy : volume investigation of biological specimens , 1994 .

[40]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[41]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[42]  Costas M. Soukoulis,et al.  Photonic Crystals and Light Localization in the 21st Century , 2001 .

[43]  M. Megens,et al.  Control of colloids with gravity, temperature gradients, and electric fields , 2003 .

[44]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[45]  D. Grier A revolution in optical manipulation , 2003, Nature.

[46]  Grier,et al.  Microscopic measurement of the pair interaction potential of charge-stabilized colloid. , 1994, Physical review letters.

[47]  Hiroshi Masuhara,et al.  Optical trapping of a metal particle and a water droplet by a scanning laser beam , 1992 .

[48]  A. Blaaderen Quantitative real-space analysis of colloidal structures and dynamics with confocal scanning light microscopy , 1997 .

[49]  M. Ashman,et al.  Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams. , 1998, Applied optics.

[50]  J. Hoogenboom,et al.  Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization. , 2003, Faraday discussions.

[51]  J. Käs,et al.  Optical deformability of soft biological dielectrics. , 2000, Physical review letters.

[52]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[53]  J. Crocker,et al.  ENTROPIC ATTRACTION AND REPULSION IN BINARY COLLOIDS PROBED WITH A LINE OPTICAL TWEEZER , 1999 .

[54]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[55]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.