Optical gain and laser emission in HgCdTe heterostructures

A detailed study of stimulated emission mechanisms as well as laser emission capability has been carried out on Hg1−xCdxTe (0.44<x<0.5) separate‐confinement heterostructures grown by molecular beam epitaxy. At low temperature, spontaneous photoluminescence (PL) occurs on extrinsic levels below the gap whereas optical gain exhibits a maximum of stimulated emission shifted towards higher energy, close to the gap. As temperature increases, spontaneous PL is shifted from the extrinsic states to the band‐to‐band transition by a thermally activated detrapping of the carriers. Above 100 K, spontaneous and stimulated emission vary in a similar way with temperature. Laser emission has been observed up to room temperature for all the heterostructures. The use of quantum wells in the active layer and graded index in the barriers has allowed a significant reduction of the excitation density threshold, as compared to a single separate‐confinement heterostructure (SCH) of same composition. However, the high‐temperature...

[1]  S. Sivananthan,et al.  Stimulated emission from a CdTe/HgCdTe separate confinement heterostructure grown by molecular beam epitaxy , 1990 .

[2]  Alain Lusson,et al.  Systematic photoluminescence study of CdxHg1-xTe alloys in a wide composition range , 1990 .

[3]  Michel Krakowski,et al.  Threshold current of single quantum well lasers: The role of the confining layers , 1986 .

[4]  Optimum separate confinement structure for midinfrared HgCdTe heterostructure lasers , 1992 .

[5]  G. Cinader,et al.  Optically pumped laser action and photoluminescence in HgCdTe layer grown on (211) CdTe by metalorganic chemical vapor deposition , 1993 .

[6]  G. Cinader,et al.  Optically pumped laser action in double‐heterostructure HgCdTe grown by metalorganic chemical vapor deposition on a CdTe substrate , 1993 .

[7]  J. Bablet,et al.  Mesa stripe transverse injection laser in HgCdTe , 1992 .

[8]  A. Ravid,et al.  Photoluminescence and laser action of Hg1−xCdxTe (x≊0.5) layer grown by liquid‐phase epitaxy , 1990 .

[9]  E. Molva,et al.  Temperature dependence of optical gain in CdTe/CdMnTe heterostructures , 1994 .

[10]  R. Zucca,et al.  HgCdTe infrared diode lasers grown by MBE , 1993 .

[11]  N. Magnea,et al.  Room-temperature laser emission near 2 μm from an optically pumped HgCdTe separate-confinement heterostructure , 1992 .

[12]  L. Ram-Mohan,et al.  Photoluminescence study of HgTe-Hg0.9Cd0.1Te superlattices , 1994 .

[13]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[14]  R. Zucca,et al.  HgCdTe double heterostructure diode lasers grown by molecular‐beam epitaxy , 1992 .

[15]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[16]  N. Magnea,et al.  Molecular beam epitaxy growth and characterization of CdxHg1−xTe (0.4 , 1992 .

[17]  A. Bouhemadou,et al.  Temperature dependence of the fundamental absorption edge of mercury cadmium telluride , 1990 .

[18]  R. Zucca,et al.  HgCdTe double heterostructure injection laser grown by molecular beam epitaxy , 1991 .

[19]  Masamichi Yamanishi,et al.  Comment on Polarization Dependent Momentum Matrix Elements in Quantum Well Lasers , 1984 .

[20]  R. F. Leheny,et al.  Direct Determination of Optical Gain in Semiconductor Crystals , 1971 .

[21]  W. I. Wang,et al.  Carrier lifetimes and threshold currents in HgCdTe double heterostructure and multi‐quantum‐well lasers , 1991 .

[22]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[23]  N. Giles,et al.  Stimulated emission at 2.8 μm from Hg‐based quantum well structures grown by photoassisted molecular beam epitaxy , 1989 .

[24]  A. Haug,et al.  Band-to-band Auger recombination in semiconductors , 1988 .

[25]  A. Ravid,et al.  Laser action and photoluminescence in an indium‐doped n‐type Hg1−xCdxTe (x=0.375) layer grown by liquid phase epitaxy , 1993 .

[26]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .