Integer representations of convex polygon intersection graphs

We give the first lower bounds on the grid size needed to represent the intersection graphs of~convex polygons. Here each corner of a polygon in the representation must lie on a corner of the grid. We provide a series of geometric constructions showing that for intersection graphs of: translated copies of any fixed parallelogram, grids of size Ω(n2) x Ω(n2) are needed; translated copies of any other fixed convex polygon, grids of size 2Ω(n) x 2Ω(n) are needed; homothetic copies of any fixed convex polygon, grids of size 2Ω(n) x 2Ω(n) are needed. We complement these results by giving a matching upper bound in each case. Hence we settle the complexity of the integer representation problem for these graphs. The upper bounds substantially improve earlier bounds and extend to higher dimensions.

[1]  Md. Saidur Rahman,et al.  Planar Graph Drawing , 2004, Lecture Notes Series on Computing.

[2]  George B. Mertzios The recognition of triangle graphs , 2012, Theor. Comput. Sci..

[3]  Daniel Král,et al.  On Intersection Graphs of Segments with Prescribed Slopes , 2001, Graph Drawing.

[4]  Ross J. Kang,et al.  Sphere and Dot Product Representations of Graphs , 2012, Discret. Comput. Geom..

[5]  Robert E. Tarjan,et al.  Intersection graphs of curves in the plane , 1976, J. Comb. Theory, Ser. B.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  Erik Jan van Leeuwen,et al.  Convex Polygon Intersection Graphs , 2010, GD.

[10]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[11]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[12]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[13]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[14]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[15]  Martin Pergel,et al.  Intersection graphs of homothetic polygons , 2008, Electron. Notes Discret. Math..

[16]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[17]  W. Marsden I and J , 2012 .

[18]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[19]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[20]  Clyde L. Monma,et al.  Tolerance graphs , 1984, Discret. Appl. Math..

[21]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[22]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[23]  Daniel Bienstock Some provably hard crossing number problems , 1991, Discret. Comput. Geom..

[24]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[25]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[26]  Michael Kaufmann,et al.  Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition , 2006, SODA '06.

[27]  Jan Kratochvíl,et al.  Representing graphs by disks and balls (a survey of recognition-complexity results) , 2001, Discret. Math..

[28]  Derek G. Corneil,et al.  Vertex splitting and the recognition of trapezoid graphs , 2011, Discret. Appl. Math..

[29]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[30]  M. Sharir,et al.  State of the Union (of geometric objects) , 2008 .

[31]  Martin Pergel Special Graph Classes and Algorithms on Them , 2008 .

[32]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[33]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[34]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[35]  Jorge Urrutia,et al.  Discrete Realizations of Contact and Intersection Graphs , 1997, Graph Drawing.

[36]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[37]  van Leeuwen,et al.  Optimization and approximation on systems of geometric objects , 2009 .

[38]  Jan Kratochvíl,et al.  String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.