Humans strategically shift decision bias by flexibly adjusting sensory evidence accumulation

Decision bias is traditionally conceptualized as an internal reference against which sensory evidence is compared. Instead, we show that individuals implement decision bias by shifting the rate of sensory evidence accumulation toward a decision bound. Participants performed a target detection task while we recorded EEG. We experimentally manipulated participants’ decision criterion for reporting targets using different stimulus-response reward contingencies, inducing either a liberal or a conservative bias. Drift diffusion modeling revealed that a liberal strategy biased sensory evidence accumulation toward target-present choices. Moreover, a liberal bias resulted in stronger midfrontal pre-stimulus 2—6 Hz (theta) power and suppression of pre-stimulus 8—12 Hz (alpha) power in posterior cortex. Alpha suppression in turn was linked to the output activity in visual cortex, as expressed through 59—100 Hz (gamma) power. These findings show that observers can intentionally control cortical excitability to strategically bias evidence accumulation toward the decision bound that maximizes reward.

[1]  C. White,et al.  Decomposing bias in different types of simple decisions. , 2014, Journal of experimental psychology. Learning, memory, and cognition.

[2]  J. Bakdash,et al.  Repeated Measures Correlation , 2017, Front. Psychol..

[3]  Niels A. Kloosterman,et al.  Pupil size tracks perceptual content and surprise , 2015, The European journal of neuroscience.

[4]  T. Sejnowski,et al.  Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons , 2001, Neuroscience.

[5]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[6]  P. Corballis,et al.  Prestimulus alpha power influences response criterion in a detection task. , 2016, Psychophysiology.

[7]  Timothy D. Hanks,et al.  Bounded Integration in Parietal Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the Environment , 2008, The Journal of Neuroscience.

[8]  Pascal Fries,et al.  Gamma-Rhythmic Gain Modulation , 2016, Neuron.

[9]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[10]  J. Cavanaugh,et al.  The Bayesian information criterion: background, derivation, and applications , 2012 .

[11]  Victor A. F. Lamme,et al.  Figure–ground activity in primary visual cortex (V1) of the monkey matches the speed of behavioral response , 2003, Neuroscience Letters.

[12]  K. Mathewson,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[13]  K. R. Ridderinkhof,et al.  Not All Errors Are Alike: Theta and Alpha EEG Dynamics Relate to Differences in Error-Processing Dynamics , 2012, The Journal of Neuroscience.

[14]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[15]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[16]  Nelson J. Trujillo-Barreto,et al.  Induced gamma band responses in human EEG after the control of miniature saccadic artifacts , 2011, NeuroImage.

[17]  W. Freeman Nonlinear gain mediating cortical stimulus-response relations , 1979, Biological Cybernetics.

[18]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[20]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[21]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[22]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[23]  Michael L. Mack,et al.  Indecision on decisional separability , 2011, Psychonomic bulletin & review.

[24]  M. Siegel,et al.  Dissociating neuronal gamma-band activity from cranial and ocular muscle activity in EEG , 2013, Front. Hum. Neurosci..

[25]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[26]  S. Kastner,et al.  FEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex , 2017, The Journal of Neuroscience.

[27]  Niko A Busch,et al.  Moment-to-Moment Fluctuations in Neuronal Excitability Bias Subjective Perception Rather than Strategic Decision-Making , 2018, eNeuro.

[28]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[29]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[30]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[31]  M. Frank,et al.  Frontal theta as a mechanism for cognitive control , 2014, Trends in Cognitive Sciences.

[32]  Niels A. Kloosterman,et al.  Top-down modulation in human visual cortex predicts the stability of a perceptual illusion. , 2015, Journal of neurophysiology.

[33]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[34]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[35]  B. Postle,et al.  Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy , 2016, Consciousness and Cognition.

[36]  R. Ratcliff Modeling response signal and response time data , 2006, Cognitive Psychology.

[37]  J. Gold,et al.  Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex , 2016, Neuron.

[38]  C. Herrmann,et al.  Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG , 2010, PloS one.

[39]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[40]  Mingzhou Ding,et al.  From Prestimulus Alpha Oscillation to Visual-evoked Response: An Inverted-U Function and Its Attentional Modulation , 2011, Journal of Cognitive Neuroscience.

[41]  Stephen V. David,et al.  Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection , 2015, Neuron.

[42]  A. Blangero,et al.  Dynamic Interplay of Value and Sensory Information in High-Speed Decision Making , 2018, Current Biology.

[43]  H. Lau,et al.  Prestimulus Oscillatory Activity over Motor Cortex Reflects Perceptual Expectations , 2013, The Journal of Neuroscience.

[44]  S. Kelly,et al.  A supramodal accumulation-to-bound signal that determines perceptual decisions in humans , 2012, Nature Neuroscience.

[45]  Stephen M Fleming,et al.  Neural mediators of changes of mind about perceptual decisions , 2018, Nature Neuroscience.

[46]  Niels A. Kloosterman,et al.  Humans strategically shift decision bias by flexibly adjusting sensory evidence accumulation in visual cortex , 2018 .

[47]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[48]  Hakwan Lau,et al.  A Role for the Superior Colliculus in Decision Criteria , 2018, Neuron.

[49]  Gregor Thut,et al.  Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance , 2017, eNeuro.

[50]  M. Siegel,et al.  A framework for local cortical oscillation patterns , 2011, Trends in Cognitive Sciences.

[51]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[52]  Andreas K. Engel,et al.  Buildup of Choice-Predictive Activity in Human Motor Cortex during Perceptual Decision Making , 2009, Current Biology.

[53]  Anne E. Urai,et al.  Phasic arousal optimizes decision computations in mice and humans , 2018, bioRxiv.

[54]  Thomas V. Wiecki,et al.  HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python , 2013, Front. Neuroinform..

[55]  Anne E. Urai,et al.  Choice History Biases Subsequent Evidence Accumulation , 2018, bioRxiv.

[56]  Roger Ratcliff,et al.  Modeling Individual Differences in the Go/No-Go Task With a Diffusion Model , 2018, Decision.

[57]  Sébastien M. Crouzet,et al.  Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability. , 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Guido Nolte,et al.  Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision , 2017, The Journal of Neuroscience.

[59]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[60]  Niels A. Kloosterman,et al.  Dynamic modulation of decision biases by brainstem arousal systems , 2017, eLife.

[61]  R. Ratcliff,et al.  Bias in the Brain: A Diffusion Model Analysis of Prior Probability and Potential Payoff , 2012, The Journal of Neuroscience.

[62]  Timothy J. Pleskac,et al.  How race affects evidence accumulation during the decision to shoot , 2017, Psychonomic Bulletin & Review.

[63]  Xiting Huang,et al.  Duration Aftereffect Depends on the Duration of Adaptation , 2017, Front. Psychol..

[64]  Johannes Jacobus Fahrenfort,et al.  The spatiotemporal profile of cortical processing leading up to visual perception. , 2008, Journal of vision.

[65]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[66]  T. Knapen,et al.  Decision-related pupil dilation reflects upcoming choice and individual bias , 2014, Proceedings of the National Academy of Sciences.

[67]  Roozbeh Kiani,et al.  Predicting the Accuracy of a Decision: A Neural Mechanism of Confidence. , 2014, Cold Spring Harbor symposia on quantitative biology.

[68]  Bradley Voytek,et al.  Alpha oscillations control cortical gain by modulating excitatory-inhibitory background activity , 2017, bioRxiv.

[69]  Elyse H. Norton,et al.  Suboptimal Criterion Learning in Static and Dynamic Environments , 2017, PLoS Comput. Biol..

[70]  Michael X. Cohen,et al.  Neurocomputational models of basal ganglia function in learning, memory and choice , 2009, Behavioural Brain Research.

[71]  Johannes J. Fahrenfort,et al.  Masking Disrupts Reentrant Processing in Human Visual Cortex , 2007, Journal of Cognitive Neuroscience.

[72]  R. Tibshirani,et al.  The problem of regions , 1998 .

[73]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[74]  W. Singer,et al.  Response to: Yuval-Greenberg et al., “Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades.” Neuron 58, 429–441 , 2009, Neuron.

[75]  H. Spekreijse,et al.  Masking Interrupts Figure-Ground Signals in V1 , 2002, Journal of Cognitive Neuroscience.

[76]  Ulman Lindenberger,et al.  Coordinated within-Trial Dynamics of Low-Frequency Neural Rhythms Controls Evidence Accumulation , 2014, The Journal of Neuroscience.