What Can Be Observed Locally?

We consider the question of locality in distributed computing in the context of quantum information. Specifically, we focus on the round complexity of quantum distributed algorithms, with no bounds imposed on local computational power or on the bit size of messages. Linial's LOCAL model of a distributed system is augmented through two types of quantum extensions: (1) initialization of the system in a quantum entangled state, and/or (2) application of quantum communication channels. For both types of extensions, we discuss proof-of-concept examples of distributed problems whose round complexity is in fact reduced through genuinely quantum effects. Nevertheless, we show that even such quantum variants of the LOCAL model have non-trivial limitations, captured by a very simple (purely probabilistic) notion which we call "physical locality" (φ-LOCAL). While this is strictly weaker than the "computational locality" of the classical LOCAL model, it nevertheless leads to a generic view-based analysis technique for constructing lower bounds on round complexity. It turns out that the best currently known lower time bounds for many distributed combinatorial optimization problems, such as Maximal Independent Set, bounds cannot be broken by applying quantum processing, in any conceivable way.

[1]  Andrzej Pelc,et al.  Oracle size: a new measure of difficulty for communication tasks , 2006, PODC '06.

[2]  Michael Elkin A near-optimal fully dynamic distributed algorithm for maintaining sparse spanners , 2006, ArXiv.

[3]  G. Jaeger,et al.  Quantum Information: An Overview , 2006 .

[4]  John C. Baez,et al.  Bell's inequality forC*-algebras , 1987 .

[5]  Amnon Ta-Shma,et al.  Classical versus quantum communication complexity , 1999, SIGA.

[6]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[7]  Louis K. Helm Quantum distributed consensus , 2008, PODC '08.

[8]  Roger Wattenhofer,et al.  What cannot be computed locally! , 2004, PODC '04.

[9]  Alfredo Navarra,et al.  Brief Announcement: On the Complexity of Distributed Greedy Coloring , 2007 .

[10]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[11]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[12]  N. Mermin Quantum mysteries revisited , 1990 .

[13]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[15]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[16]  Carsten Müller,et al.  Few-photon electron-positron pair creation in the collision of a relativistic nucleus and an intense x-ray laser beam , 2004 .

[17]  Alfredo Navarra,et al.  On the complexity of distributed graph coloring with local minimality constraints , 2009 .

[18]  Michael Elkin,et al.  A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners , 2006, PODC '07.

[19]  Moni Naor,et al.  A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring , 1991, SIAM J. Discret. Math..

[20]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[21]  Andrzej Pelc,et al.  Distributed Computing with Advice: Information Sensitivity of Graph Coloring , 2007, ICALP.

[22]  Marek Zukowski On Bell’s Theorem, Quantum Communication, and Entanglement Detection , 2009 .

[23]  G. Vidal,et al.  Classical simulation versus universality in measurement-based quantum computation , 2006, quant-ph/0608060.

[24]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[25]  Ronald de Wolf,et al.  Quantum communication and complexity , 2002, Theor. Comput. Sci..

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  David Peleg,et al.  Proximity-Preserving Labeling Schemes and Their Applications , 1999, WG.

[28]  Harry Buhrman A short note on Shor's factoring algorithm , 1996, SIGA.

[29]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[30]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[31]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[32]  Avinatan Hassidim,et al.  Fast quantum byzantine agreement , 2005, STOC '05.

[33]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[34]  Alain Tapp,et al.  Can quantum mechanics help distributed computing? , 2008, SIGA.

[35]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[36]  Keiji Matsumoto,et al.  Exact Quantum Algorithms for the Leader Election Problem , 2005, STACS.

[37]  Raymond F. Streater,et al.  Lost Causes in and beyond Physics , 2007 .

[38]  Alfredo Navarra,et al.  On the Complexity of Distributed Greedy Coloring , 2007, DISC.

[39]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[40]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[41]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[42]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[43]  Sudebkumar Prasant Pal,et al.  Characterizing the combinatorics of distributed EPR pairs for multi-partite entanglement , 2003 .

[44]  Masaki Owari,et al.  Entanglement convertibility for infinite-dimensional pure bipartite states , 2004 .

[45]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[46]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[47]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[48]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[49]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[50]  Nathan Linial,et al.  Distributive graph algorithms Global solutions from local data , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[51]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[52]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[53]  Sudebkumar Prasant Pal,et al.  Multi-partite Quantum Entanglement versus Randomization: Fair and Unbiased Leader Election in Networks , 2003, quant-ph/0306195.

[54]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[55]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[56]  Moni Naor,et al.  What Can be Computed Locally? , 1995, SIAM J. Comput..

[57]  Gopal Pandurangan,et al.  Distributed quantum computing: a new frontier in distributed systems or science fiction? , 2008, SIGA.

[58]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[59]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.