Control of bone formation by the serpentine receptor Frizzled-9

Fzd9, induced upon osteoblast differentiation, is required for bone matrix mineralization in primary osteoblasts.

[1]  E. Lewiecki,et al.  Osteoporosis , 2011, Annals of Internal Medicine.

[2]  Zhijian J. Chen,et al.  Emerging Role of ISG15 in Antiviral Immunity , 2010, Cell.

[3]  G. Trinchieri,et al.  Type I interferon: friend or foe? , 2010, The Journal of experimental medicine.

[4]  J. Huibregtse,et al.  The ISG15 Conjugation System Broadly Targets Newly Synthesized Proteins: Implications for the Antiviral Function of ISG15 , 2010, Molecular Cell.

[5]  R. Baron,et al.  Negative Regulation of Bone Formation by the Transmembrane Wnt Antagonist Kremen-2 , 2010, PloS one.

[6]  Lynda F. Bonewald,et al.  Osteocyte Wnt/β-Catenin Signaling Is Required for Normal Bone Homeostasis , 2010, Molecular and Cellular Biology.

[7]  O. Mäkitie,et al.  Low density lipoprotein receptor‐related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia , 2010, Clinical endocrinology.

[8]  Yufei Shan,et al.  Positive Regulation of Interferon Regulatory Factor 3 Activation by Herc5 via ISG15 Modification , 2010, Molecular and Cellular Biology.

[9]  G. Karsenty,et al.  Patients with high‐bone‐mass phenotype owing to Lrp5‐T253I mutation have low plasma levels of serotonin , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  L. Ye,et al.  Expression of Wnt5a in tooth germs and the related signal transduction analysis. , 2010, Archives of oral biology.

[11]  Claus Christiansen,et al.  Denosumab for prevention of fractures in postmenopausal women with osteoporosis. , 2009, The New England journal of medicine.

[12]  G. Sauter,et al.  Impaired gastric acidification negatively affects calcium homeostasis and bone mass , 2009, Nature Medicine.

[13]  Seung Hyeun Ka,et al.  ISG15 modification of filamin B negatively regulates the type I interferon‐induced JNK signalling pathway , 2009, EMBO reports.

[14]  David M. Thomas,et al.  Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. , 2009, The Journal of clinical investigation.

[15]  C. Schubert The genomic basis of the Williams – Beuren syndrome , 2008, Cellular and Molecular Life Sciences.

[16]  J. John Mann,et al.  Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum , 2008, Cell.

[17]  K. Ozono,et al.  Lrp6 Hypomorphic Mutation Affects Bone Mass Through Bone Resorption in Mice and Impairs Interaction With Mesd , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[18]  L. Groop,et al.  Large-scale association study between two coding LRP5 gene polymorphisms and bone phenotypes and fractures in men , 2008, Osteoporosis International.

[19]  K. Knobeloch,et al.  Vaccinia Virus E3 Protein Prevents the Antiviral Action of ISG15 , 2008, PLoS pathogens.

[20]  A Hofman,et al.  Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study , 2008, The Lancet.

[21]  D. Kiel,et al.  Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. , 2008, JAMA.

[22]  I. Nishimoto,et al.  Wnt5a promotes adhesion of human dermal fibroblasts by triggering a phosphatidylinositol-3 kinase/Akt signal. , 2007, Cellular signalling.

[23]  M. Brown,et al.  Genetic Analyses in a Sample of Individuals With High or Low BMD Shows Association With Multiple Wnt Pathway Genes , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  G. Schulte,et al.  The Frizzled family of unconventional G-protein-coupled receptors. , 2007, Trends in pharmacological sciences.

[25]  B. Hallgrímsson,et al.  Inactivation of Pten in Osteo‐Chondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[26]  Mone Zaidi,et al.  Skeletal remodeling in health and disease , 2007, Nature Medicine.

[27]  Renny T. Franceschi,et al.  Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development , 2007, The Journal of cell biology.

[28]  Dong-er Zhang,et al.  ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. , 2007, Genes & development.

[29]  R. Emeson,et al.  Calcitonin Deficiency in Mice Progressively Results in High Bone Turnover , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[30]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[31]  P. Kostenuik,et al.  Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. , 2006, Bone.

[32]  R. Baron,et al.  Deletion of a Single Allele of the Dkk1 Gene Leads to an Increase in Bone Formation and Bone Mass , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[33]  M. Glimcher,et al.  Regulation of Adult Bone Mass by the Zinc Finger Adapter Protein Schnurri-3 , 2006, Science.

[34]  M. Almeida,et al.  Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by β-Catenin-dependent and -independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-Kinase/AKT* , 2005, Journal of Biological Chemistry.

[35]  K. Knobeloch,et al.  ISG15, an Interferon-Stimulated Ubiquitin-Like Protein, Is Not Essential for STAT1 Signaling and Responses against Vesicular Stomatitis and Lymphocytic Choriomeningitis Virus , 2005, Molecular and Cellular Biology.

[36]  Steven Gygi,et al.  Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Almli,et al.  Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval , 2005, Development.

[38]  Bart O. Williams,et al.  Essential Role of β-Catenin in Postnatal Bone Acquisition* , 2005, Journal of Biological Chemistry.

[39]  Hans Clevers,et al.  Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. , 2005, Developmental cell.

[40]  Xizhi Guo,et al.  Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. , 2005, Developmental cell.

[41]  Walter Birchmeier,et al.  Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. , 2005, Developmental cell.

[42]  I. Weissman,et al.  Frizzled 9 knock-out mice have abnormal B-cell development. , 2005, Blood.

[43]  M. Wegner,et al.  The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation , 2005, The Journal of cell biology.

[44]  J. Bregman,et al.  Multisystem study of 20 older adults with Williams syndrome , 2004, American journal of medical genetics. Part A.

[45]  D. Ornitz,et al.  Sequential roles of Hedgehog and Wnt signaling in osteoblast development , 2004, Development.

[46]  G. Karsenty,et al.  ATF4, the Osteoblast Accumulation of Which Is Determined Post-translationally, Can Induce Osteoblast-specific Gene Expression in Non-osteoblastic Cells* , 2004, Journal of Biological Chemistry.

[47]  J. Partanen,et al.  Drapc1 expression during mouse embryonic development. , 2004, Gene expression patterns : GEP.

[48]  E. Wagner,et al.  The Fos‐related antigen Fra‐1 is an activator of bone matrix formation , 2004, The EMBO journal.

[49]  Gary S Stein,et al.  The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. , 2004, Molecular endocrinology.

[50]  S. Teitelbaum,et al.  Genetic regulation of osteoclast development and function , 2003, Nature Reviews Genetics.

[51]  Gideon A. Rodan,et al.  Control of osteoblast function and regulation of bone mass , 2003, Nature.

[52]  P. Lombroso,et al.  Frizzled-9 Is Activated by Wnt-2 and Functions in Wnt/β-Catenin Signaling* , 2002, The Journal of Biological Chemistry.

[53]  Richard P Lifton,et al.  High bone density due to a mutation in LDL-receptor-related protein 5. , 2002, The New England journal of medicine.

[54]  Ivan Lobov,et al.  Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor , 2002, The Journal of cell biology.

[55]  Alan Wise,et al.  Target validation of G-protein coupled receptors. , 2002, Drug discovery today.

[56]  Choun-Ki Joo,et al.  Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway , 2002, Molecular and Cellular Biology.

[57]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[58]  J Mao,et al.  Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. , 2001, Molecular cell.

[59]  Andrew Tomlinson,et al.  arrow encodes an LDL-receptor-related protein essential for Wingless signalling , 2000, Nature.

[60]  T. Martin,et al.  Therapeutic approaches to bone diseases. , 2000, Science.

[61]  K. Schughart,et al.  Characterization and expression pattern of the frizzled gene Fzd9, the mouse homolog of FZD9 which is deleted in Williams-Beuren syndrome. , 1999, Genomics.

[62]  R. Nusse,et al.  A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. , 1997, Human molecular genetics.

[63]  K. Loeb,et al.  The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. , 1992, The Journal of biological chemistry.

[64]  C. Morris,et al.  Adults with Williams syndrome. , 1991, American journal of medical genetics. Supplement.

[65]  M. Drezner,et al.  Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee , 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[66]  C. Cooper,et al.  Osteoporosis: trends in epidemiology, pathogenesis and treatment , 2006 .

[67]  M. Bouxsein,et al.  Essential role of beta-catenin in postnatal bone acquisition. , 2005, The Journal of biological chemistry.

[68]  C. Hartmann,et al.  Cbfa 1-independent decrease in osteoblast proliferation , osteopenia , and persistent embryonic eye vascularization in mice deficient in Lrp 5 , a Wnt coreceptor , 2002 .

[69]  P. Lombroso,et al.  Frizzled-9 is activated by Wnt-2 and functions in Wnt/beta -catenin signaling. , 2002, The Journal of biological chemistry.

[70]  Mark L. Johnson,et al.  A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. , 2002, American journal of human genetics.

[71]  R. Nusse,et al.  Mechanisms of Wnt signaling in development. , 1998, Annual review of cell and developmental biology.