Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network

A fuzzy self-organizing map (SOM) network is proposed in this paper for visual motor control of a 7 degrees of freedom (DOF) robot manipulator. The inverse kinematic map from the image plane to joint angle space of a redundant manipulator is highly nonlinear and ill-posed in the sense that a typical end-effector position is associated with several joint angle vectors. In the proposed approach, the robot workspace in image plane is discretized into a number of fuzzy regions whose center locations and fuzzy membership values are determined using a Fuzzy C-Mean (FCM) clustering algorithm. SOM network then learns the inverse kinematics by on-line by associating a local linear map for each cluster. A novel learning algorithm has been proposed to make the robot manipulator to reach a target position. Any arbitrary level of accuracy can be achieved with a number of fine movements of the manipulator tip. These fine movements depend on the error between the target position and the current manipulator position. In particular, the fuzzy model is found to be better as compared to Kohonen self-organizing map (KSOM) based learning scheme proposed for visual motor control. Like existing KSOM learning schemes, the proposed scheme leads to a unique inverse kinematic solution even for a redundant manipulator. The proposed algorithms have been successfully implemented in real-time on a 7 DOF PowerCube robot manipulator, and results are found to concur with the theoretical findings.

[1]  Danica Kragic,et al.  Survey on Visual Servoing for Manipulation , 2002 .

[2]  A. A. Maciejewski,et al.  Repeatable generalized inverse control strategies for kinematically redundant manipulators , 1993, IEEE Trans. Autom. Control..

[3]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[4]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[5]  Kimmo Kiviluoto,et al.  Topology preservation in self-organizing maps , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[6]  L. Behera,et al.  A hybrid neural control scheme for visual-motor coordination , 1999 .

[7]  Helge J. Ritter,et al.  Three-dimensional neural net for learning visuomotor coordination of a robot arm , 1990, IEEE Trans. Neural Networks.

[8]  Homayoun Seraji,et al.  Motion control of 7-DOF arms: the configuration control approach , 1993, IEEE Trans. Robotics Autom..

[9]  Laxmidhar Behera,et al.  A Model-free Redundancy Resolution Technique for Visual Motor Coordination of a 6 DOF robot manipulator , 2007, 2007 IEEE 22nd International Symposium on Intelligent Control.

[10]  Anthony A. Maciejewski,et al.  On the implementation of velocity control for kinematically redundant manipulators , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[11]  S.H. Han,et al.  Fuzzy logic control of a robot manipulator based on visual servoing , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[12]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[13]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[14]  Homayoun Seraji,et al.  Configuration control of redundant manipulators: theory and implementation , 1989, IEEE Trans. Robotics Autom..

[15]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[16]  Helge Ritter,et al.  Learning of Visuomotor Coordination of a Robot Arm with Redundant Degrees of Freedon , 1989 .

[17]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[18]  Jörg A. Walter,et al.  The PSOM Algorithm and Applications , 2000 .

[19]  Laxmidhar Behera,et al.  Visual–Motor Coordination Using a Quantum Clustering Based Neural Control Scheme , 2004, Neural Processing Letters.

[20]  Michael Kuperstein,et al.  Adaptive visual-motor coordination in multijoint robots using parallel architecture , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[21]  Patrick van der Smagt,et al.  Neural Network Control of a Pneumatic Robot Arm , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[22]  Laxmidhar Behera,et al.  Visual Motor Control of a 7 DOF Robot Manipulator Using Function Decomposition and Sub-Clustering in Configuration Space , 2008, Neural Processing Letters.

[23]  Helge J. Ritter,et al.  Rapid learning with parametrized self-organizing maps , 1996, Neurocomputing.

[24]  Peter K. Allen,et al.  Visual servoing by partitioning degrees of freedom , 2001, IEEE Trans. Robotics Autom..

[25]  Stefan Schaal,et al.  Inverse kinematics for humanoid robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[26]  Alfredo Anglani,et al.  Visual servoing of a robotic manipulator based on fuzzy logic control , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Arthur Prochazka,et al.  Sensory control of locomotion , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[28]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[29]  A. Prochazka The fuzzy logic of visuomotor control. , 1996, Canadian journal of physiology and pharmacology.

[30]  Danica Kragic,et al.  Cue integration for visual servoing , 2001, IEEE Trans. Robotics Autom..

[31]  Stefan Schaal,et al.  Learning inverse kinematics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[32]  Hua Li,et al.  Robot Hand-Eye Coordination Based on Fuzzy Logic , 1995 .

[33]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[34]  Klaus Schulten,et al.  Implementation of self-organizing neural networks for visuo-motor control of an industrial robot , 1993, IEEE Trans. Neural Networks.