Effect of an Optimised Impact Pad on Molten Steel Quality in a 4 Strand Delta-shaped Tundish

The tundish plays an important role to produce refined steel as well as acting in its traditional role as a steel distribution vessel. Presently, a tundish fitted with different flow control devices, such as an impact pad, dams, weirs, baffles, etc. is used to provide the maximum opportunity for carrying out various metallurgical operations such as inclusion separation, superheat control, reduced slag entrapment and to provide thermal and particulate homogenization. Modelling has shown that a correctly designed impact pad in a continuous casting tundish can significantly reduce the amounts of slag entrained into individual moulds during ladle change operations. It can also minimize non-metallic inclusions reporting to the final product by improving inclusion flotation efficiency. Water can be used for the physical simulation, because the kinematic viscosities of liquid steel (at 1600°C) and water (at 20°C) are equivalent. In this one third scale water modeling work, the effects of an optimized impact pad on molten steel quality was evaluated in terms of "slag" entrainment during a ladle change, together with tracer dispersion studies and residence time distribution (RTD) analyses for isothermal and non-isothermal cases (temperature differences in between incoming fluid and existing fluid within the tundish) so as to visualize flow patterns developing within the tundish. Furthermore, the effect of increasing the molten steel capacity within the tundish by raising the liquid level, on the degree of slag entrainment during ladle changing operations, was also demonstrated.%%%%Le Tundish joue un role important dans la production de l'acier raffine ainsi que d'agir dans son role traditionnel d'un recipient de la distribution d'acier. Actuellement, un Tundish equipe de divers dispositifs de commande d'ecoulement tels comme amortisseur d'impact, barrage, deversoirs, baffles, etc. est utilise pour fournir le maximum de chances pour la realisation de diverses operations metallurgiques tels que la separation d'inclusions, alliage rognage, reglage de la surchauffe, reduit piegeage de scories et pour fournir une homogeneisation thermique et de particules. La modelisation a montre que la conception d'un approprie amortisseur d'impact dans un Tundish de coulee continue permet de reduire de facon significativement les quantites de scories piegeage dans des moules individuels pendant les operations de changement de louche. Cela reduit egalement les inclusions non metalliques et ameliore le produit final en raison d'une plus grande efficacite de la flottation.L'eau peut etre utilisee pour la simulation physique, parce que la viscosite cinematique de l'acier liquide (1600°C) et de l'eau (20°C) sont equivalentes. A une echelle 1/3 du travail de modelisation, l'effet d'un optimale amortisseur d'impact sur la qualite d'acier fondu a ete evaluee en termes de piegeage de scorie pendant le changement de "ladle", cette avec l'etude de la dispersion de traceurs et les analyses de la distribution des temps de sejour (RTD) pour les cas…

[1]  Henrik Solhed,et al.  An investigation of slag floatation and entrapment in a continuous‐casting tundish using fluid‐flow simulations, sampling and physical metallurgy , 2003 .

[2]  S. López-Ramírez,et al.  Physical and mathematical determination of the influence of input temperature changes on the molten steel flow characteristics in slab tundishes , 2004 .

[3]  Qinfu Hou,et al.  Modelling of Inclusion Motion and Flow Patterns in Swirling Flow Tundishes with Symmetrical and Asymmetrical Structures , 2008 .

[4]  Roderick I. L. Guthrie,et al.  Hydrodynamic performance of steelmaking tundish systems: a comparative study of three different tundish designs , 1997 .

[5]  R. Morales,et al.  Mathematical simulation of the influence of buoyancy forces on the molten steel flow in a continuous casting tundish , 2000 .

[6]  Rajeev Kumar Singh,et al.  Modelling of flow behaviour in continuous casting tundish , 2003 .

[7]  Shailja Singh,et al.  Model Study of the Dynamics of Flow of Steel Melt in the Tundish , 1993 .

[8]  R. Morales,et al.  Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes , 2001 .

[9]  Rodolfo D. Morales,et al.  Heat and mass transfer of a convective-stratified flow in a trough type tundish , 2003 .

[10]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[11]  Roderick I. L. Guthrie,et al.  Physical and Mathematical Modelling to Study the Effect of Ladle Shroud Mis-alignment on Liquid Metal Quality in a Tundish , 2011 .

[13]  Yogeshwar Sahai,et al.  Melt Flow Characterization in Continuous Casting Tundishes , 1996 .

[14]  Roderick I. L. Guthrie,et al.  Effect of flow modifiers on liquid metal cleanliness in four-strand delta shaped billet caster tundish , 2012 .

[15]  Rodolfo D. Morales,et al.  Modeling Study of Turbulent Flow Effect on Inclusion Removal in a Tundish with Swirling Ladle Shroud , 2010 .

[16]  Toshihiko Emi,et al.  Tundish Technology for Clean Steel Production , 2008 .

[17]  Herbert Pfeifer,et al.  Particle Distribution and Separation in Continuous Casting Tundish , 2009 .

[18]  R. Guthrie Engineering in Process Metallurgy , 1992 .

[19]  Tomasz Merder,et al.  Optimization of Two‐Strand Industrial Tundish Work with Use of Turbulence Inhibitors: Physical and Numerical Modeling , 2012 .

[20]  Kaike Cai,et al.  Fluid flow and inclusion removal in continuous casting tundish , 2000 .

[21]  Anil Kumar,et al.  An assessment of fluid flow modelling and Residence Time Distribution phenomena in steelmaking tundish systems , 2004 .

[22]  Yuji Miki,et al.  Modeling of inclusion removal in a tundish , 1999 .

[23]  K M Godiwalla,et al.  Fluid flow behaviour in a water model tundish under open, submerged and modified inlet conditions , 2001 .

[24]  Jing Jiang,et al.  Fluid flow in large-capacity horizontal continuous casting tundishes , 2010 .

[25]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .

[26]  Roderick I. L. Guthrie,et al.  The Physical and Mathematical Modelling of Continuous Casting Tundish Systems , 1999 .

[27]  Anil Kumar,et al.  Modeling of Fluid Flow and Residence Time Distribution in a Four-strand Tundish for Enhancing Inclusion Removal , 2008 .

[28]  Jeong Whan Han,et al.  Fluid flow analysis in horizontal continuous casting tundish , 2002, Metals and Materials International.

[29]  Roderick I. L. Guthrie,et al.  Similarity considerations in the physical modelling of steel making tundish systems , 1995 .

[30]  R. Guthrie,et al.  Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: Part I. Aqueous modeling , 1993 .

[31]  B. Thomas,et al.  Investigation of Fluid Flow and Steel Cleanliness in the Continuous Casting Strand , 2007 .

[33]  S. K. Ajmani,et al.  Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish , 2011 .

[34]  G. Solorio-Díaz,et al.  Effect of a swirling ladle shroud on fluid flow and mass transfer in a water model of a tundish , 2005 .

[36]  C. Koria,et al.  Physical Modeling of the Effects of the Flow Modifier on the Dynamics of Molten Steel Flowing in a Tundish Satish , 1994 .

[37]  Ken J. Craig,et al.  Design optimization of a single-strand continuous caster tundish using residence Time Distribution data , 2001 .

[38]  P. Rao,et al.  Effect of Height and Position of Dams on Inclusion Removal in a Six Strand Tundish , 2008 .

[39]  G. Wen,et al.  Improvement of tundish shape and optimization of flow control devices for sequence casting heavy steel ingots , 2012, International Journal of Minerals, Metallurgy, and Materials.

[40]  K. Chattopadhyay,et al.  Dimensionless numbers for tundish modelling and the Guthrie number (Gu) , 2012 .

[41]  S K Ray,et al.  Modelling performance of four‐strand, 12 t, delta shaped continuous casting tundish fitted with different flow modifying arrangements for better steel quality , 2011 .

[42]  J. A. Ramos-Banderas,et al.  Modeling Study of the Vortex and Short Circuit Flow Effect on Inclusion Removal in a Slab Tundish , 2010 .

[43]  R. Guthrie,et al.  Effect of submergence depth of the ladle shroud on liquid steel quality output from a delta shaped four strand tundish , 2011 .

[44]  D. J. de Kock,et al.  Mathematical maximisation of minimum residence time for two strand continuous caster , 2003 .

[45]  Ahmed Bellaouar,et al.  Numerical investigation of the fluid flow in continuous casting tundish using analysis of RTD curves , 2009 .

[46]  Jong-Kyu Yoon,et al.  Residence Time Distribution Analysis by the Modified Combined Model for the Design of Continuous Refining Vessel , 1999 .

[47]  Roderick I. L. Guthrie,et al.  Physical and Mathematical Modelling of Steelmaking Tundish Operations: A Review of the Last Decade (1999–2009) , 2010 .

[48]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[49]  Chang-Soo Kim,et al.  Water Model Study on Convection Pattern of Molten Steel Flow in Continuous Casting Tundish , 1998 .

[50]  J. Y. Li,et al.  Study on geometric dimension design of multiheat teeming tundish for heavy steel ingots , 2012 .

[51]  Rodolfo D. Morales,et al.  Mathematical simulation of effects of flow control devices and buoyancy forces on molten steel flow and evolution of output temperatures in tundish , 2001 .

[52]  R. Guthrie,et al.  Inclusion behavior and heat-transfer phenomena in steelmaking tundish operations: part III. applications—computational approach to tundish design , 1993 .

[53]  Yogeshwar Sahai,et al.  A Criterion for Water Modeling of Non-isothermal Melt Flows in Continuous Casting Tundishes , 1996 .

[54]  J. Palafox-Ramos,et al.  Inertial and buoyancy driven water flows under gas bubbling and thermal stratification conditions in a tundish model , 2004 .

[55]  Lage Jonsson,et al.  Two-fluid simulation on the mixed convection flow pattern in a nonisothermal water model of continuous casting tundish , 2000 .

[56]  Yoshihiko Higuchi,et al.  Fluid flow, heat transfer and inclusion behavior in continuous casting tundishes , 1993 .