A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY
暂无分享,去创建一个
[1] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[2] A. F. Filippov. On Certain Questions in the Theory of Optimal Control , 1962 .
[3] A. Agrachev. Feedback-Invariant Optimal Control Theory and Differential Geometry, II. Jacobi Curves for Singular Extremals , 1998 .
[4] R. Gamkrelidze,et al. THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .
[5] Martin Tamm,et al. Subanalytic sets in the calculus of variation , 1981 .
[6] A. V. Sarychev. Nonlinear Systems with Impulsive and Generalized Function Controls , 1991 .
[7] Z. Ge. Horizontal path spaces and Carnot-Carathéodory metrics , 1993 .
[8] Quasi-extremality for control systems , 1991 .
[9] S. Jacquet. Subanalyticity of the Sub-Riemannian Distance , 1999 .
[10] The Transcendence Needed to Compute the Sphere and the Wave Front in Martinet SR-Geometry , 2001 .
[11] Andrei A. Agrachev,et al. Abnormal sub-riemannian geodesics : Morse index and rigidity , 1996 .
[12] Andrei A. Agrachev,et al. Quadratic mappings in geometric control theory , 1990 .
[13] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[14] R. Montgomery. A survey of singular curves in sub-Riemannian geometry , 1995 .
[15] Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity , 1999 .
[16] Andrei A. Agrachev,et al. Strong minimality of abnormal geodesics for 2-distributions , 1995 .
[17] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[18] Andrei A. Agrachev,et al. Sub-riemannian sphere in Martinet flat case , 1997 .