A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY

We establish compactness properties for sets of length-min imizi g admissible paths of a prescribed small length. This implies subanay ticity of small subRiemannian balls for a wide class of real-analytic sub-Riem annian structures: for any structure without abnormal minimizers and for many stru ctures without strictly abnormal minimizers.

[1]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[2]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[3]  A. Agrachev Feedback-Invariant Optimal Control Theory and Differential Geometry, II. Jacobi Curves for Singular Extremals , 1998 .

[4]  R. Gamkrelidze,et al.  THE EXPONENTIAL REPRESENTATION OF FLOWS AND THE CHRONOLOGICAL CALCULUS , 1979 .

[5]  Martin Tamm,et al.  Subanalytic sets in the calculus of variation , 1981 .

[6]  A. V. Sarychev Nonlinear Systems with Impulsive and Generalized Function Controls , 1991 .

[7]  Z. Ge Horizontal path spaces and Carnot-Carathéodory metrics , 1993 .

[8]  Quasi-extremality for control systems , 1991 .

[9]  S. Jacquet Subanalyticity of the Sub-Riemannian Distance , 1999 .

[10]  The Transcendence Needed to Compute the Sphere and the Wave Front in Martinet SR-Geometry , 2001 .

[11]  Andrei A. Agrachev,et al.  Abnormal sub-riemannian geodesics : Morse index and rigidity , 1996 .

[12]  Andrei A. Agrachev,et al.  Quadratic mappings in geometric control theory , 1990 .

[13]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[14]  R. Montgomery A survey of singular curves in sub-Riemannian geometry , 1995 .

[15]  Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity , 1999 .

[16]  Andrei A. Agrachev,et al.  Strong minimality of abnormal geodesics for 2-distributions , 1995 .

[17]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[18]  Andrei A. Agrachev,et al.  Sub-riemannian sphere in Martinet flat case , 1997 .