PRTS: A Passive RFID Real-Time Tracking System Under the Conditions of Sparse Measurements

In many logistics and manufacturing applications, tracking of moving objects with radio frequency identification (RFID) tags on a conveyor belt is a premise for many other processes, e.g., sorting procedures, stamping IDs in a surveillance video. However, in complex industrial environments, a sharp decline in Tag Read Record (TRR) often results in severe spatial ambiguity. In this type of scenarios, existing systems cannot work effectively owing to the prevalent existence of noise. This paper proposes a Passive RFID Real-time Tracking System (PRTS) with tolerance of a small TRR, which is designed for tracking RFID-tagged mobile objects. We use detailed deduction to convert the tracking problem into a sparse signal reconstruction one. To solve this problem, we devise a novel normal sparse signal reconstruction method based on greedy pursuit by making the best of the available prior knowledge and further ameliorate it via calibration of the phase deviation from frequency and angle-of-arrival responses. Furthermore, we leverage the simplified particle filters to facilitate the real-time tracking of mobile objects on conveyor belts. We implement the prototype PRTS with commercial-off-the-shelf RFID devices and evaluate it in various scenarios. Experimental results demonstrate that PRTS achieves a mean relative error of 7 cm under the conditions of extremely sparse measurements.

[1]  Yunhao Liu,et al.  OTrack: Order tracking for luggage in mobile RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[2]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[3]  Alice Buffi,et al.  The SARFID Technique for Discriminating Tagged Items Moving Through a UHF-RFID Gate , 2017, IEEE Sensors Journal.

[4]  Jack Walker,et al.  Range-Doppler Imaging of Rotating Objects , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[5]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[6]  M. Vossiek,et al.  Inverse SAR approach for localization of moving RFID tags , 2013, 2013 IEEE International Conference on RFID (RFID).

[7]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[8]  Lei Yang,et al.  Anchor-free backscatter positioning for RFID tags with high accuracy , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[9]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[10]  Longfei Shangguan,et al.  The Design and Implementation of a Mobile RFID Tag Sorting Robot , 2016, MobiSys.

[11]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[12]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Jue Wang,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2015, SIGCOMM 2015.

[14]  H. Ermert,et al.  Multifrequency Acoustical Holography , 1979, IEEE Transactions on Sonics and Ultrasonics.

[15]  Yunhao Liu,et al.  Relative Localization of RFID Tags using Spatial-Temporal Phase Profiling , 2015, NSDI.

[16]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[17]  P. Nepa,et al.  Location and tracking of items moving on a conveyor belt and equipped with UHF-RFID tags , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[18]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[19]  Martin Vossiek,et al.  Holographic localization of passive UHF RFID transponders , 2011, 2011 IEEE International Conference on RFID.

[20]  Andreas Stelzer,et al.  Indoor Localization of Passive UHF RFID Tags Based on Phase-of-Arrival Evaluation , 2013, IEEE Transactions on Microwave Theory and Techniques.

[21]  Jinlong Wang,et al.  Iterative Phase Reconstruction and Weighted Localization Algorithm for Indoor RFID-Based Localization in NLOS Environment , 2014, IEEE Sensors Journal.

[22]  Xiuwen Liu,et al.  Accurate localization of RFID tags using phase difference , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[23]  Gaetano Borriello,et al.  SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength , 2000 .

[24]  Alice Buffi,et al.  A Phase-Based Technique for Localization of UHF-RFID Tags Moving on a Conveyor Belt: Performance Analysis and Test-Case Measurements , 2015, IEEE Sensors Journal.

[25]  Lei Yang,et al.  See Through Walls with COTS RFID System! , 2015, MobiCom.

[26]  Martin Vossiek,et al.  UHF RFID Localization Based on Synthetic Apertures , 2013, IEEE Transactions on Automation Science and Engineering.

[27]  Yong Yuan,et al.  UHF RFID shelf solution with cascaded reader antenna and positioning capability , 2012, 2012 IEEE International Conference on RFID (RFID).

[28]  K. Jaakkola,et al.  Phase-Based UHF RFID Tracking With Nonlinear Kalman Filtering and Smoothing , 2012, IEEE Sensors Journal.

[29]  Zheng Bao,et al.  High-Resolution ISAR Imaging by Exploiting Sparse Apertures , 2012, IEEE Transactions on Antennas and Propagation.

[30]  Markus Brandner,et al.  Experimental evaluation of RFID gate concepts , 2011, 2011 IEEE International Conference on RFID.

[31]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..