A High-Resolution Atlas and Statistical Model of the Human Heart From Multislice CT

Atlases and statistical models play important roles in the personalization and simulation of cardiac physiology. For the study of the heart, however, the construction of comprehensive atlases and spatio-temporal models is faced with a number of challenges, in particular the need to handle large and highly variable image datasets, the multi-region nature of the heart, and the presence of complex as well as small cardiovascular structures. In this paper, we present a detailed atlas and spatio-temporal statistical model of the human heart based on a large population of 3D+time multi-slice computed tomography sequences, and the framework for its construction. It uses spatial normalization based on nonrigid image registration to synthesize a population mean image and establish the spatial relationships between the mean and the subjects in the population. Temporal image registration is then applied to resolve each subject-specific cardiac motion and the resulting transformations are used to warp a surface mesh representation of the atlas to fit the images of the remaining cardiac phases in each subject. Subsequently, we demonstrate the construction of a spatio-temporal statistical model of shape such that the inter-subject and dynamic sources of variation are suitably separated. The framework is applied to a 3D+time data set of 138 subjects. The data is drawn from a variety of pathologies, which benefits its generalization to new subjects and physiological studies. The obtained level of detail and the extendability of the atlas present an advantage over most cardiac models published previously.

[1]  Colin Studholme,et al.  A template free approach to volumetric spatial normalization of brain anatomy , 2004, Pattern Recognit. Lett..

[2]  Alejandro F. Frangi,et al.  Bilinear Models for Spatio-Temporal Point Distribution Analysis , 2009, 2007 IEEE 11th International Conference on Computer Vision.

[3]  Alejandro F. Frangi,et al.  Influence of Geometric Variations on LV Activation Times: A Study on an Atlas-Based Virtual Population , 2010, STACOM/CESC.

[4]  Ross T. Whitaker,et al.  Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[5]  Stephen R. Marsland,et al.  A minimum description length objective function for groupwise non-rigid image registration , 2008, Image Vis. Comput..

[6]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[7]  Mark Holden,et al.  A Review of Geometric Transformations for Nonrigid Body Registration , 2008, IEEE Transactions on Medical Imaging.

[8]  Hans Hagen,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Non-manifold Mesh Extraction from Time-varying Segmented Volumes Used for Modeling a Human Heart , 2022 .

[9]  David R. Haynor,et al.  PET-CT image registration in the chest using free-form deformations , 2003, IEEE Transactions on Medical Imaging.

[10]  Patrick Clarysse,et al.  A review of cardiac image registration methods , 2002, IEEE Transactions on Medical Imaging.

[11]  Alejandro F. Frangi,et al.  A groupwise mutual information metric for cost efficient selection of a suitable reference in cardiac computational atlas construction , 2010, Medical Imaging.

[12]  Stefan Klein,et al.  Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach , 2011, Medical Image Anal..

[13]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[14]  Peter Lorenzen,et al.  Multi-modal image set registration and atlas formation , 2006, Medical Image Anal..

[15]  Suresh Venkatasubramanian,et al.  The geometric median on Riemannian manifolds with application to robust atlas estimation , 2009, NeuroImage.

[16]  Stephen R. Marsland,et al.  Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines , 2003, MICCAI.

[17]  Max A. Viergever,et al.  Construction and evaluation of an average CT brain image for inter-subject registration , 2004, Comput. Biol. Medicine.

[18]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[19]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[20]  Max A. Viergever,et al.  Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans , 2009, IEEE Transactions on Medical Imaging.

[21]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[22]  Cristian Lorenz,et al.  A comprehensive shape model of the heart , 2006, Medical Image Anal..

[23]  D. Perperidis,et al.  Spatio-temporal registration and modelling of the heart using cardiovascular MR imaging. , 2006 .

[24]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[25]  Christos Davatzikos,et al.  GRAM: A framework for geodesic registration on anatomical manifolds , 2010, Medical Image Anal..

[26]  R. Prakash,et al.  Determination of right ventricular wall thickness in systole and diastole. Echocardiographic and necropsy correlation in 32 patients. , 1978, British heart journal.

[27]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[28]  J. Daubert,et al.  Variation in left atrial transmural wall thickness at sites commonly targeted for ablation of atrial fibrillation , 2007, Journal of Interventional Cardiac Electrophysiology.

[29]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[30]  M. Stadius,et al.  The angiographie definitions of the Bypass Angioplasty Revascularization Investigation , 1992 .

[31]  Alejandro F Frangi,et al.  Computational cardiac atlases: from patient to population and back , 2009, Experimental physiology.

[32]  Ziji Wu,et al.  Multiple material marching cubes algorithm , 2003 .

[33]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[34]  Alfred O. Hero,et al.  Least Biased Target Selection in Probabilistic Atlas Construction , 2005, MICCAI.

[35]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[36]  Alejandro F. Frangi,et al.  Sensitivity Analysis of Mesh Warping and Subsampling Strategies for Generating Large Scale Electrophysiological Simulation Data , 2011, FIMH.

[37]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[38]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[39]  H Page McAdams,et al.  Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. , 2004, Radiology.

[40]  Hyunjin Park,et al.  Construction of an abdominal probabilistic atlas and its application in segmentation , 2003, IEEE Transactions on Medical Imaging.

[41]  Alejandro F. Frangi,et al.  Bilinear point distribution models for heart motion analysis , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[42]  Alejandro F. Frangi,et al.  GIMIAS: An Open Source Framework for Efficient Development of Research Tools and Clinical Prototypes , 2009, FIMH.

[43]  Dinggang Shen,et al.  Intermediate templates guided groupwise registration of diffusion tensor images , 2011, NeuroImage.

[44]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[45]  Carissa G. Fonseca,et al.  Rationale and Design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) Trial , 2009, Journal of cardiovascular electrophysiology.

[46]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[47]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[48]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[49]  Jean-Philippe Ponthot,et al.  Generating smooth surface meshes from multi-region medical images. , 2012, International journal for numerical methods in biomedical engineering.

[50]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[51]  Alejandro F. Frangi,et al.  Effect of Scar Development on Fast Electrophysiological Models of the Human Heart: In-Silico Study on Atlas-Based Virtual Populations , 2011, FIMH.

[52]  Anand Rangarajan,et al.  Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction , 2006, ECCV.

[53]  Alejandro F Frangi,et al.  Realistic simulation of cardiac magnetic resonance studies modeling anatomical variability, trabeculae, and papillary muscles , 2011, Magnetic resonance in medicine.

[54]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[55]  Alejandro F. Frangi,et al.  Predictive Modeling of Cardiac Fiber Orientation Using the Knutsson Mapping , 2011, MICCAI.

[56]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[57]  Terry M. Peters,et al.  Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries , 2004, Medical Image Anal..

[58]  Daniel Rueckert,et al.  Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm , 2004, Medical Image Anal..

[59]  Mert R. Sabuncu,et al.  Image-driven population analysis through mixture modeling , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[60]  Dinggang Shen,et al.  ABSORB: Atlas building by self-organized registration and bundling , 2010, NeuroImage.

[61]  Max A. Viergever,et al.  Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus , 2010, Medical Image Anal..

[62]  Juha Koikkalainen,et al.  Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images , 2004, Medical Image Anal..

[63]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[64]  Bernd Hamann,et al.  Construction of Simplified Boundary Surfaces from Serial-sectioned Metal Micrographs , 2007, IEEE Transactions on Visualization and Computer Graphics.

[65]  Alistair A. Young,et al.  The Cardiac Atlas Project: Preliminary Description of Heart Shape in Patients with Myocardial Infarction , 2010, STACOM/CESC.

[66]  Seungyong Lee,et al.  Injectivity Conditions of 2D and 3D Uniform Cubic B-Spline Functions , 2000, Graph. Model..

[67]  Simon K. Warfield,et al.  : Multi-subject Registration for Unbiased Statistical Atlas Construction , 2004, MICCAI.

[68]  Alistair A. Young,et al.  The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart , 2011, Bioinform..

[69]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[70]  Juha Koikkalainen,et al.  Methods of Artificial Enlargement of the Training Set for Statistical Shape Models , 2008, IEEE Transactions on Medical Imaging.

[71]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[72]  Alejandro F. Frangi,et al.  Unsupervised segmentation and personalised FE modelling of in vivo human myocardial mechanics based on an MRI atlas , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[73]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[74]  Jürgen Weese,et al.  Automated 3-D PDM construction from segmented images using deformable models , 2003, IEEE Transactions on Medical Imaging.

[75]  C. Taylor,et al.  Diffeomorphic statistical shape models , 2008 .

[76]  Chandrajit L Bajaj,et al.  An Automatic 3D Mesh Generation Method for Domains with Multiple Materials. , 2010, Computer methods in applied mechanics and engineering.

[77]  Raimund Erbel,et al.  Aortic dimensions and the risk of dissection , 2005, Heart.

[78]  James S. Duncan,et al.  Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model , 2010, IEEE Transactions on Medical Imaging.

[79]  Gary E. Christensen,et al.  Synthesizing average 3D anatomical shapes , 2006, NeuroImage.

[80]  Hervé Delingette,et al.  Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population , 2012, IEEE Transactions on Medical Imaging.

[81]  James V. Miller,et al.  Atlas Stratification , 2006, MICCAI.

[82]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[83]  Alejandro F. Frangi,et al.  Interventional Endocardial Motion Estimation from Electroanatomical Mapping Data: Application to Scar Characterization , 2013, IEEE Transactions on Biomedical Engineering.

[84]  James V. Miller,et al.  Atlas stratification , 2007, Medical Image Anal..

[85]  Alejandro F. Frangi,et al.  Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography , 2012, Medical Image Anal..

[86]  Hugh Calkins,et al.  Normal reference values for the adult right ventricle by magnetic resonance imaging. , 2006, The American journal of cardiology.

[87]  Alejandro F. Frangi,et al.  Automatic Construction of 3D-ASM Intensity Models by Simulating Image Acquisition: Application to Myocardial Gated SPECT Studies , 2008, IEEE Transactions on Medical Imaging.

[88]  Dinggang Shen,et al.  SharpMean: Groupwise registration guided by sharp mean image and tree-based registration , 2011, NeuroImage.

[89]  Josien P. W. Pluim,et al.  Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines , 2007, IEEE Transactions on Image Processing.

[90]  T van Walsum,et al.  Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multicenter, and multivendor study. , 2010, Medical physics.

[91]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[92]  Alejandro F. Frangi,et al.  A statistical shape model of the heart and its application to model-based segmentation , 2007, SPIE Medical Imaging.

[93]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.