Single-Sink Multicommodity Flow with Side Constraints

In recent years, several new models for network flows have been analyzed, inspired by emerging telecommunication technologies. These include models of resilient flow, motivated by the introduction of high capacity optical links, coloured flow, motivated by Wavelength-Division-Multiplexed optical networks, unsplittable flow motivated by SONET networks, and confluent flow motivated by next-hop routing in internet protocol (IP) networks. In each model, the introduction of new side-constraints means that a max-flow min-cut theorem does not necessarily hold, even in the setting where all demands are destined to a common node (sink) in the network. In such cases, one may seek bounds on the “flow-cut gap” for the model. Such approximate max-flow min-cut theorems are a useful measure for bounding the impact of new technology on congestion in networks whose traffic flows obey these side constraints.

[1]  Andrew McGregor,et al.  Island hopping and path colouring with applications to WDM network design , 2007, SODA '07.

[2]  Stéphane Pérennes,et al.  Optimal Wavelength-routed Multicasting , 1998, Discret. Appl. Math..

[3]  James B. Orlin,et al.  Cyclic Scheduling via Integer Programs with Circular Ones , 1980, Oper. Res..

[4]  Gianpaolo Oriolo,et al.  Reserving resilient capacity for a single commodity with upper-bound constraints , 2003, Networks.

[5]  R. Yeung,et al.  Network coding theory , 2006 .

[6]  L. Zhang,et al.  Line system design for DWDM networks , 2004, 11th International Telecommunications Network Strategy and Planning Symposium. NETWORKS 2004,.

[7]  Peter Winkler,et al.  Wavelength assignment and generalized interval graph coloring , 2003, SODA '03.

[8]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[9]  Stéphane Pérennes,et al.  Efficient collective communication in optical networks , 1996, Theor. Comput. Sci..

[10]  D. R. Fulkerson,et al.  On edge-disjoint branchings , 1976, Networks.

[11]  L. Trotter,et al.  Integer Rounding and Polyhedral Decomposition for Totally Unimodular Systems , 1978 .

[12]  Jon M. Kleinberg,et al.  Single-source unsplittable flow , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[13]  Rajmohan Rajaraman,et al.  Meet and merge: approximation algorithms for confluent flows , 2003, STOC '03.

[14]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[15]  Rajmohan Rajaraman,et al.  (Almost) tight bounds and existence theorems for confluent flows , 2004, STOC '04.

[16]  Alan J. Hoffman,et al.  SOME RECENT APPLICATIONS OF THE THEORY OF LINEAR INEQUALITIES TO EXTREMAL COMBINATORIAL ANALYSIS , 2003 .

[17]  D. Avis,et al.  Graph theory and combinatorial optimization , 2005 .

[18]  M. Iri A NEW METHOD OF SOLVING TRANSPORTATION· NETWORK PROBLEMS , 1960 .

[19]  Sanjeev Khanna,et al.  An O(sqrt(n)) Approximation and Integrality Gap for Disjoint Paths and Unsplittable Flow , 2006, Theory Comput..

[20]  Sampath Kannan,et al.  Better Alternatives to OSPF Routing , 2005, Algorithmica.

[21]  Mikkel Thorup,et al.  Optimizing OSPF/IS-IS weights in a changing world , 2002, IEEE J. Sel. Areas Commun..

[22]  Gianpaolo Oriolo,et al.  Reserving Resilient Capacity in a Network , 2001, SIAM J. Discret. Math..

[23]  Christina Fragouli,et al.  Network Coding Fundamentals , 2007, Found. Trends Netw..

[24]  Iraj Saniee,et al.  An optimization problem related to balancing loads on SONET rings , 1994, Telecommun. Syst..

[25]  Elliot Anshelevich,et al.  Path Decomposition Under a New Cost Measure with Applications to Optical Network Design , 2004, ESA.

[26]  Adrian Vetta,et al.  Visualizing, Finding and Packing Dijoins , 2005 .

[27]  Sanjeev Khanna,et al.  The all-or-nothing multicommodity flow problem , 2004, STOC '04.

[29]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[30]  Peter Winkler,et al.  The Ring Loading Problem , 1998, SIAM Rev..

[31]  Michel X. Goemans,et al.  On the Single-Source Unsplittable Flow Problem , 1999, Comb..

[32]  Adrian Vetta,et al.  Degree-constrained network flows , 2007, STOC '07.

[33]  Charu C. Aggarwal,et al.  On multiroute maximum flows in networks , 2002, Networks.

[34]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[35]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[36]  Clifford Stein,et al.  Improved approximation algorithms for unsplittable flow problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[37]  Alexander Schrijver,et al.  Paths, Flows, and VLSI-Layout , 1990 .

[38]  Daniel C. Kilper,et al.  Design tools for transparent optical networks , 2006, Bell Labs Technical Journal.

[39]  H. Jung Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .

[40]  Martin Skutella Approximating the single source unsplittable min-cost flow problem , 2002, Math. Program..

[41]  P. Hell,et al.  Graph Problems Arising from Wavelength-Routing in All-Optical Networks , 2004 .

[42]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[43]  András Frank Edge-disjoint paths in planar graphs , 1985, J. Comb. Theory, Ser. B.

[44]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[45]  Jon M. Kleinberg,et al.  Decision algorithms for unsplittable flow and the half-disjoint paths problem , 1998, STOC '98.

[46]  Jon M. Kleinberg,et al.  An approximation algorithm for the disjoint paths problem in even-degree planar graphs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[47]  Sanjeev Khanna,et al.  Edge disjoint paths revisited , 2003, SODA '03.

[48]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[49]  Frank Hwang,et al.  The Mathematical Theory of Nonblocking Switching Networks , 1998 .

[50]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[51]  Harald Räcke,et al.  Minimizing Congestion in General Networks , 2002, FOCS.

[52]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[53]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[54]  Daniel Bienstock,et al.  Strong inequalities for capacitated survivable network design problems , 2000, Math. Program..