Finality regained: A coalgebraic study of Scott-sets and multisets

Abstract In this paper we study iterated circular multisets in a coalgebraic framework. We will produce two essentially different universes of such sets. The unisets of the first universe will be shown to be precisely the sets of the Scott universe. The unisets of the second universe will be precisely the sets of the AFA-universe. We will have a closer look into the connection of the iterated circular multisets and arbitrary trees. RID=""ID="" Mathematics Subject Classification (2000): 03B45, 03E65, 03E70, 18A15, 18A22, 18B05, 68Q85 RID=""ID="" Key words or phrases: Multiset – Non-wellfounded set – Scott-universe – AFA – Coalgebra – Modal logic – Graded modalities

[1]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[2]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[3]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[4]  D. Harrison,et al.  Vicious Circles , 1995 .

[5]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[6]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[7]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..