Stamping strip layout for optimal raw material utilization

Abstract Stamping dies are used to produce very large numbers of identical parts from sheet metal. Due to the high volumes of parts produced, even small inefficiencies in material utilization per part can lead to very large amounts of wasted material over a die's life. This paper develops an exact algorithm for orienting the part on the strip to maximize material utilization. The algorithm optimally nests convex or nonconvex blanks on a strip and predicts both the orientation and strip width that minimize material usage. Technological constraints, such as blank orientation constraints due to planar anisotropy, are also incorporated into the algorithm. The algorithm's use is demonstrated with examples that show how sensitive material utilization can be to small changes in blank orientation in the die.

[1]  Chul Kim,et al.  A compact and practical CAD system for blanking or piercing of irregular-shaped sheet metal products and stator and rotor parts , 1998 .

[2]  Martin Loftus,et al.  Accommodating diverse shapes within hexagonal pavers , 1991 .

[3]  Dov Dori,et al.  Efficient nesting of congruent convex figures , 1984, CACM.

[4]  V. Milenkovic,et al.  Compaction and separation algorithms for non-convex polygons and their applications☆ , 1995 .

[5]  Andrew Y. C. Nee,et al.  An Intelligent Planning Aid for the Design of Progressive Dies , 1996 .

[6]  Rajender Singh,et al.  A low-cost modeller for two-dimensional metal stamping layouts , 1998 .

[7]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[8]  Ralph R. Martin,et al.  Putting objects into boxes , 1988 .

[9]  K.K.B. Hon,et al.  Feature-based design of progressive press tools , 1996 .

[10]  Andrew Y. C. Nee,et al.  A Heuristic Algorithm for Optimum Layout of Metal Stamping Blanks , 1984 .

[11]  Andrew Y. C. Nee Computer Aided Layout of Metal Stamping Blanks , 1984 .

[12]  Zone-Ching Lin,et al.  An investigation of an expert system for shearing cut progressive die design , 1996 .

[13]  Prasad K. Yarlagadda,et al.  CADDS: an automated die design system for sheet-metal blanking , 1992 .

[14]  K.K.B. Hon,et al.  Automated Design of Progressive Dies , 1996 .

[15]  P. Jain,et al.  Optimal Blank Nesting Using Simulated Annealing , 1992 .

[16]  Jerry L. Sanders,et al.  A nesting algorithm for irregular parts and factors affecting trim losses , 1987 .

[17]  K.K.B. Hon,et al.  New approaches for the nesting of two-dimensional shapes for press tool design , 1992 .

[18]  S. Somasundaram,et al.  A sliding algorithm for optimal nesting of arbitrarily shaped sheet metal blanks , 1995 .

[19]  Moises Sudit,et al.  PROCEDURES FOR SOLVING SINGLE-PASS STRIP LAYOUT PROBLEMS , 1994 .

[20]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[21]  William W. Chow Nesting of a single shape on a strip , 1979 .

[22]  Vassilios E. Theodoracatos,et al.  The optimal packing of arbitrarily-shaped polygons using simulated annealing and polynomial-time cooling schedules , 1995 .

[23]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[24]  Andrew Y. C. Nee,et al.  Configuration of progressive dies , 1998, Artif. Intell. Eng. Des. Anal. Manuf..

[25]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[26]  Antonio Albano,et al.  NESTING TWO-DIMENSIONAL SHAPES IN RECTANGULAR MODULES , 1976 .

[27]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .