Dissertation II: Geo-Techniques

This proposal is an example of a technique driven proposal. The proposal is a fine example of the use of graphics to simplify complex methods of analysis and the effectiveness of graphics to convey information. Additionally, the literature review clearly defines the contribution of the research and is presented in a straightforward fashion using a table structure.

[1]  Johannes R. Sveinsson,et al.  Feature extraction for multisource data classification with artificial neural networks , 1997 .

[2]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Johannes R. Sveinsson,et al.  Parallel consensual neural networks , 1997, IEEE Trans. Neural Networks.

[4]  S. Khorram,et al.  Remotely Sensed Change Detection Based on Artificial Neural Networks , 1999 .

[5]  Sun-Yuan Kung,et al.  Decision-based neural networks with signal/image classification applications , 1995, IEEE Trans. Neural Networks.

[6]  Fabio Maselli,et al.  Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors , 1995 .

[7]  Jonas Ardö,et al.  Neural networks, multitemporal Landsat Thematic Mapper data and topographic data to classify forest , 1997 .

[8]  Paul M. Tag,et al.  An AVHRR Multiple Cloud-Type Classification Package , 2000 .

[9]  S. Grossberg,et al.  A self-organizing neural network for supervised learning, recognition, and prediction , 1992, IEEE Communications Magazine.

[10]  I. Kanellopoulos,et al.  Strategies and best practice for neural network image classification , 1997 .

[11]  Brian Frizzelle,et al.  Mapping Continuous Distributions of Land Cover: A Comparison of Maximum-Likelihood Estimation and Artificial Neural Networks , 2001 .

[12]  Leah L. Rogers,et al.  Solving Problems in Environmental Engineering and Geosciences with Artificial Neural Networks , 1996 .

[13]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[14]  P. Meyera,et al.  Semi-automated procedures for tree species identification in high spatial resolution data from digitized colour infrared-aerial photography , 1996 .

[15]  P. Gong,et al.  Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential Reasoning and Artificial Neural Network Techniques for Geological Mapping , 1996 .

[16]  William Salas,et al.  Physical and human dimensions of deforestation in Amazonia , 1994 .

[17]  Y. A. Hussin,et al.  A comparison between neural networks and maximum likelihood remotely sensed data classifiers to detect tropical rain logged - over forest in Indonesia , 2001 .

[18]  B. L. Yoon,et al.  Artificial neural network technology , 1989, SGSM.

[19]  Jon Atli Benediktsson,et al.  Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data , 1993 .

[20]  P. Treitz,et al.  Integrating spectral, spatial, and terrain variables for forest ecosystem classification , 2000 .

[21]  Paul M. Mather,et al.  Computer Processing of Remotely-Sensed Images: An Introduction , 1988 .

[22]  Patricia G. Foschi,et al.  DETECTING SUBPIXEL WOODY VEGETATION IN DIGITAL IMAGERY USING TWO ARTIFICIAL INTELLIGENCE APPROACHES , 1997 .

[23]  Robert A. Schowengerdt,et al.  A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[24]  Giles M. Foody,et al.  Using prior knowledge in artificial neural network classification with a minimal training set , 1995 .

[25]  Brent N. Holben,et al.  Extracting forest age in a Pacific Northwest Forest from thematic mapper and topographic data , 1996 .

[26]  Giles M. Foody,et al.  Detection of partial land cover change associated with the migration of inter-class transitional zones , 1999 .

[27]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[28]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[29]  Giles M. Foody,et al.  Land Cover Classification by an Artificial Neural Network with Ancillary Information , 1995, Int. J. Geogr. Inf. Sci..

[30]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[31]  K. Price,et al.  Mapping Land Cover in a High Plains Agro-ecosystem Using a Multidate Landsat Thematic Mapper Modeling Approach , 1997 .

[32]  Mahmood R. Azimi-Sadjadi,et al.  A study of cloud classification with neural networks using spectral and textural features , 1999, IEEE Trans. Neural Networks.

[33]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[34]  B. Turner,et al.  Performance of a neural network: mapping forests using GIS and remotely sensed data , 1997 .

[35]  Ronald M. Welch,et al.  A neural network approach to cloud classification , 1990 .

[36]  Hugh G. Lewis,et al.  Super-resolution target identification from remotely sensed images using a Hopfield neural network , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[38]  Darrel L. Williams,et al.  The effects of spatial resolution on the classification of Thematic Mapper data , 1985 .

[39]  W. Salas,et al.  Mapping secondary tropical forest and forest age from SPOT HRV data , 1999 .

[40]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[41]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  F. Roli,et al.  Multisource Classification of Complex Rural Areas by Statistical and Neural-Network Approaches , 1997 .

[43]  J. Key,et al.  Classification of merged AVHRR and SMMR Arctic data with neural networks , 1989 .

[44]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[45]  Kai-Yi Huang,et al.  Comparing a piecewise linear classifier woth Gaussian maximum-likelihood and parallelepiped classifiers in terms of accuracy and speed , 1994 .

[46]  G. Hay,et al.  Remote Sensing Contributions to the Scale Issue , 1999 .

[47]  K. Ranson,et al.  An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA , 1997 .

[48]  B. Brisco,et al.  Multidate SAR/TM synergism for crop classification in western Canada , 1995 .

[49]  Eduardo S. Brondizio,et al.  Spectral identification of successional stages following deforestation in the Amazon , 1993 .

[50]  Sei-Wang Chen,et al.  Neural-fuzzy classification for segmentation of remotely sensed images , 1997, IEEE Trans. Signal Process..

[51]  Robert A. Schowengerdt,et al.  A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery , 1995 .

[52]  P. D. Heermann,et al.  Classification of multispectral remote sensing data using a back-propagation neural network , 1992, IEEE Trans. Geosci. Remote. Sens..

[53]  James Williamson,et al.  A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data , 2001, IEEE Trans. Geosci. Remote. Sens..