Synthesis of bulk reactive Ni–Al composites using high pressure torsion

[1]  A. Mukasyan,et al.  SHS in Ni/Al Nanofoils: A Review of Experiments and Molecular Dynamics Simulations , 2018 .

[2]  A. Mukasyan,et al.  Gasless Reactive Compositions for Materials Joining: An Overview , 2018 .

[3]  Fu-chi Wang,et al.  Enhanced reactivity of Ni-Al reactive material formed by cold spraying combined with cold-pack rolling , 2018 .

[4]  A. Mazilkin,et al.  Phase transitions in Cu-based alloys under high pressure torsion , 2017 .

[5]  R. Pippan,et al.  Deformation‐Induced Supersaturation in Immiscible Material Systems during High‐Pressure Torsion   , 2017 .

[6]  C. Doumanidis,et al.  Mechanics and energetics modeling of ball-milled metal foil and particle structures , 2017 .

[7]  S. Son,et al.  Microscopic two-color infrared imaging of Ni Al reactive particles and pellets , 2016 .

[8]  R. Winarski,et al.  X-ray nanotomography and focused-ion-beam sectioning for quantitative three-dimensional analysis of nanocomposites. , 2016, Journal of synchrotron radiation.

[9]  S. Son,et al.  Combustion of mechanically activated Ni/Al reactive composites with microstructural refinement tailored using two-step milling , 2015 .

[10]  C. Doumanidis,et al.  Miniature thermal matches: from nanoheaters to reactive fractals , 2015 .

[11]  David P. Adams,et al.  Reactive multilayers fabricated by vapor deposition. A critical review , 2015 .

[12]  Charalabos C. Doumanidis,et al.  Spark ignitable Ni–Al ball-milled powders for bonding applications , 2014 .

[13]  K. Edalati,et al.  Formation of FeNi with L10-ordered structure using high-pressure torsion , 2014 .

[14]  Y. Champion,et al.  Structure and properties of a nanoscaled composition modulated metallic glass , 2014, Journal of Materials Science.

[15]  C. Doumanidis,et al.  Spark ignitable ball milled powders of Al and Ni at NiAl composition , 2014 .

[16]  K. Edalati,et al.  Effect of temperature on solid-state formation of bulk nanograined intermetallic Al3Ni during high-pressure torsion , 2014 .

[17]  T. P. Weihs,et al.  Self-propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness , 2013 .

[18]  S. W. Dean Energetic intermetallic materials formed by cold spray , 2013 .

[19]  S. Rouvimov,et al.  Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture , 2013 .

[20]  S. Dillon,et al.  Dependence of shear-induced mixing on length scale. , 2013 .

[21]  A. Strachan,et al.  Tailored Reactivity of Ni+Al Nanocomposites: Microstructural Correlations , 2012 .

[22]  K. Edalati,et al.  In situ production of bulk intermetallic-based nanocomposites and nanostructured intermetallics by high-pressure torsion , 2012 .

[23]  R. Pippan,et al.  The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion , 2012, Acta materialia.

[24]  H. Kanayama,et al.  Significance of temperature increase in processing by high-pressure torsion , 2011 .

[25]  C. Doumanidis,et al.  Synthesis of reactive Al/Ni structures by ball milling , 2010 .

[26]  C. Doumanidis,et al.  The influence of structure on thermal behavior of reactive Al–Ni powder mixtures formed by ball milling , 2010 .

[27]  A. Mukasyan,et al.  Effect of mechanical activation on thermal explosion in Ni-Al mixtures , 2010 .

[28]  Lucas J. Koerner,et al.  Phase transformations during rapid heating of Al/Ni multilayer foils , 2008 .

[29]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[30]  R. Pippan,et al.  Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation , 2008, 0804.4378.

[31]  R. Pippan,et al.  On the Onset of a Steady State in Body-Centered Cubic Iron during Severe Plastic Deformation at Low Homologous Temperatures , 2008 .

[32]  R. Pippan,et al.  Characterization of tungsten fragmentation in a W-25%Cu composite after high-pressure torsion , 2007 .

[33]  X. Qiu,et al.  Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils , 2007 .

[34]  T. P. Weihs,et al.  Long-term stability of nanostructured systems with negative heats of mixing , 2007 .

[35]  C. Penot,et al.  Time-resolved X-ray diffraction study of SHS-produced NiAl and NiAl-ZrO2 composites , 2007 .

[36]  G. Dinda,et al.  Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers , 2006, cond-mat/0611434.

[37]  J. Li,et al.  Adiabatic temperature of combustion synthesis of Al–Ni systems , 2003 .

[38]  A. J. Gavens,et al.  Al/Ni formation reactions: characterization of the metastable Al9Ni2 phase and analysis of its formation , 2003 .

[39]  J. Weissmüller,et al.  Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers , 2001 .

[40]  K. Morsi,et al.  Review: reaction synthesis processing of Ni–Al intermetallic materials , 2001 .

[41]  Timothy P. Weihs,et al.  Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils , 2000 .

[42]  L. Battezzati,et al.  Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing , 1999 .

[43]  Tetsuo Sakai,et al.  Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process , 1999 .

[44]  Z. A. Munir,et al.  The synthesis of nickel aluminides by multilayer self-propagating combustion , 1995 .

[45]  Zuhair A. Munir,et al.  The combustion synthesis of multilayer NiAl systems , 1994 .

[46]  R. Armstrong,et al.  Theoretical models for the combustion of alloyable materials , 1992, Metallurgical and Materials Transactions A.

[47]  Carl V. Thompson,et al.  Self‐propagating explosive reactions in Al/Ni multilayer thin films , 1990 .

[48]  Z. A. Munir,et al.  The propagation of a solid‐state combustion wave in Ni‐Al foils , 1989 .

[49]  B. Predel,et al.  Impurity diffusion of Al in Ni single crystals studied by secondary ion mass spectrometry (SIMS) , 1981 .

[50]  D. Beke,et al.  Determination of diffusion coefficients of Zn, Co and Ni in aluminium by a resistometric method , 1978 .

[51]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[52]  G. Schütz,et al.  Deformation-driven formation of equilibrium phases in the Cu–Ni alloys , 2011, Journal of Materials Science.

[53]  Arvind Varma,et al.  Combustion Synthesis of Advanced Materials: Principles and Applications , 1998 .