Non-linear primary-multiple separation with directional curvelet frames
暂无分享,去创建一个
[1] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[2] Douglas W. Oldenburg,et al. Wavelet estimation and deconvolution , 1981 .
[3] T. Ulrych,et al. Analytic minimum entropy deconvolution , 1982 .
[4] J. R. Berryhill,et al. Deep-water peg legs and multiples: Emulation and suppression , 1986 .
[5] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[6] J. W. Wiggins,et al. Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction , 1988 .
[7] J. Wang,et al. Subsurface imaging using magnetotelluric data , 1988 .
[8] D. J. Verschuur,et al. Adaptive surface-related multiple elimination , 1992 .
[9] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[10] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[11] P. M. van den Berg,et al. Seismic applications of acoustic reciprocity , 1993 .
[12] Mauricio D. Sacchi,et al. Minimum entropy deconvolution with frequency-domain constraints , 1994 .
[13] D. Donoho,et al. Translation-Invariant De-Noising , 1995 .
[14] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[15] Arthur B. Weglein,et al. Internal multiple attenuation using inverse scattering: Results from prestack 1 & 2D acoustic and elastic synthetics , 1996 .
[16] Mauricio D. Sacchi,et al. Estimation of the discrete Fourier transform, a linear inversion approach , 1996 .
[17] D. J. Verschuur,et al. Estimation of multiple scattering by iterative inversion, Part I: Theoretical considerations , 1997 .
[18] Arthur B. Weglein,et al. Source signature estimation based on the removal of first-order multiples , 1997 .
[19] W. S. Ross,et al. Multiple suppression — Beyond 2‐D. Part II: Application to subsalt multiples , 1997 .
[20] D. J. Verschuur,et al. Estimation of multiple scattering by iterative inversion; Part II, Practical aspects and examples , 1997 .
[21] Arthur B. Weglein,et al. An inverse-scattering series method for attenuating multiples in seismic reflection data , 1997 .
[22] W. S. Ross. Multiple suppression: Beyond 2‐D. Part I: Theory , 1997 .
[23] Hart F. Smith. A Hardy space for Fourier integral operators , 1998 .
[24] Paul Tseng,et al. Block coordinate relaxation methods for nonparamatric signal denoising , 1998, Defense, Security, and Sensing.
[25] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[26] S. Mallat. A wavelet tour of signal processing , 1998 .
[27] Dmitri Lokshtanov. Multiple suppression by data‐consistent deconvolution , 1999 .
[28] E. Candès,et al. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .
[29] Luc T. Ikelle. An analysis of 2D and 3D inverse scattering multiple attenuation , 2000 .
[30] Daniel Trad. Implementations and applications of the sparse Radon transform , 2001 .
[31] Tadeusz J. Ulrych,et al. Implementations And Applications Of The Sparse Radon Transform , 2001 .
[32] Nam-Yong Lee,et al. Wavelet methods for inverting the Radon transform with noisy data , 2001, IEEE Trans. Image Process..
[33] K. Bube,et al. An operator decomposition approach for the separation of signal and coherent noise in seismic wavefields , 2001 .
[34] E. Candès,et al. Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .
[35] Robert D. Nowak,et al. An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..
[36] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[37] Yanghua Wang,et al. Multiple subtraction using an expanded multichannel matching filter , 2003 .
[38] Ray Abma,et al. Weighted subtraction for diffracted multiple attenuation , 2003 .
[39] Mauricio D. Sacchi,et al. Latest views of the sparse Radon transform , 2003 .
[40] A. Guitton,et al. Adaptive subtraction of multiples using the L1‐norm , 2004 .
[41] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[42] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[43] Felix J. Herrmann,et al. Curvelet-domain multiple elimination with sparseness constraints , 2004 .
[44] D. Donoho,et al. Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .
[45] J. Tropp. JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .
[46] F. Herrmann,et al. Robust Curvelet-Domain Primary-Multiple Separation with Sparseness Constraints , 2005 .
[47] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[48] Lexing Ying,et al. 3D discrete curvelet transform , 2005, SPIE Optics + Photonics.
[49] D. Donoho,et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .
[50] Felix J. Herrmann,et al. Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.
[51] Yaakov Tsaig,et al. Extensions of compressed sensing , 2006, Signal Process..
[52] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[53] Michael Elad,et al. Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.
[54] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[55] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[56] Joel A. Tropp,et al. Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.
[57] A. Gisolf,et al. Fourier reconstruction of marine-streamer data in four spatial coordinates , 2006 .