Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.

[1]  R. Hermann,et al.  Quenching rattling modes in skutterudites with pressure , 2015 .

[2]  Huiqian Luo,et al.  Nodeless superconductivity in the presence of spin-density wave in pnictide superconductors: The case of BaFe2-xNixAs2 , 2015, 1501.01655.

[3]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[4]  S. Suwas,et al.  Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites , 2013 .

[5]  D. Fuks,et al.  Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys , 2013 .

[6]  Yaniv Gelbstein,et al.  A Comparison Between the Mechanical and Thermoelectric Properties of Three Highly Efficient p-Type GeTe-Rich Compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-Doped Ge0.87Pb0.13Te , 2013, Journal of Electronic Materials.

[7]  W. Schranz,et al.  New p- and n-type skutterudites with ZT > 1 and nearly identical thermal expansion and mechanical properties , 2013 .

[8]  Y. Gelbstein,et al.  Mechanical Alloying and Spark Plasma Sintering of Higher Manganese Silicides for Thermoelectric Applications , 2013, Journal of Electronic Materials.

[9]  H. Ipser,et al.  Phase Equilibria in the Sn-Rich Corner of the Ni-Sb-Sn System , 2013, Journal of Electronic Materials.

[10]  W. Schranz,et al.  Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12 , 2012 .

[11]  E. Bauer,et al.  High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation , 2012 .

[12]  P. Rogl,et al.  Mechanical Properties of Skutterudites , 2011 .

[13]  C. Felser,et al.  Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys , 2011 .

[14]  E. Bauer,et al.  Compositional dependence of the thermoelectric properties of (SrxBaxYb1 − 2x)yCo4Sb12 skutterudites , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[16]  Peter Rogl,et al.  A new generation of p-type didymium skutterudites with high ZT , 2011 .

[17]  E. Bauer,et al.  Enhanced Thermoelectric Figure of Merit in P-Type DDy(Fe1-XCox)4Sb12 , 2011 .

[18]  E. Bauer,et al.  Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12 , 2010 .

[19]  M. B. Maple,et al.  Thermal expansion of skutterudites , 2010 .

[20]  Eric S. Toberer,et al.  Zintl Chemistry for Designing High Efficiency Thermoelectric Materials , 2010 .

[21]  E. Bauer,et al.  MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties , 2009 .

[22]  M. Zehetbauer,et al.  Bulk nanostructured materials , 2009 .

[23]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[24]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[25]  W. Schranz,et al.  Confinement effects on glass forming liquids probed by dynamic mechanical analysis , 2008, 1001.3769.

[26]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[27]  P. Roussel,et al.  A new investigation of the system Ni–Sn , 2007 .

[28]  Z. Dashevsky,et al.  In-doped Pb0.5Sn0.5Te p-type samples prepared by powder metallurgical processing for thermoelectric applications , 2007 .

[29]  M. Zehetbauer,et al.  Deformation Induced Vacancies with Severe Plastic Deformation: Measurements and Modelling , 2006 .

[30]  M. Heilemann,et al.  Lithium insertion mechanism in CoSb3 analysed by 121Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations , 2004 .

[31]  M. Calandra,et al.  Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.

[32]  M. Zehetbauer,et al.  The Role of Hydrostatic Pressure in Severe Plastic Deformation , 2003 .

[33]  C. Godart,et al.  A novel skutterudite phase in the Ni–Sb–Sn system: phase equilibria and physical properties , 2002 .

[34]  K. Roberts,et al.  Thesis , 2002 .

[35]  X. Wallart,et al.  Bonding in skutterudites: Combined experimental and theoretical characterization of CoSb 3 , 2001 .

[36]  P. Canfield,et al.  Low-temperature thermal conductivity of a single-grain Y-Mg-Zn icosahedral quasicrystal , 2000 .

[37]  H. Takizawa,et al.  Thermoelectric properties of Sn-filled skutterudites , 2000 .

[38]  H. Takizawa,et al.  Synthesis and thermoelectric properties of tin-filled skutterudite, SnxCo4Sb12 , 2000 .

[39]  G. Kotzyba,et al.  Crystal Structure and Properties of Some Filled and Unfilled Skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3, and NiP3 , 2000 .

[40]  E. Bauer,et al.  Physical properties of skutterudites YbxM4Sb12, M = Fe, Co, Rh, Ir , 2000 .

[41]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[42]  H. Takizawa,et al.  Atom insertion into the CoSb3 skutterudite host lattice under high pressure , 1999 .

[43]  M. Rotter,et al.  A miniature capacitance dilatometer for thermal expansion and magnetostriction , 1998 .

[44]  W. Schranz Dynamic mechanical analysisa powerful tool for the study of phase transitions , 1997 .

[45]  E. Hyer,et al.  RATIONAL SYNTHESIS OF METASTABLE SKUTTERUDITE COMPOUNDS USING MULTILAYER PRECURSORS , 1997 .

[46]  M. Zehetbauer,et al.  Stage IV work hardening in cell forming materials, part II: A new mechanism , 1996 .

[47]  Zhukov,et al.  Electronic structure and bonding in skutterudite-type phosphides. , 1996, Physical review. B, Condensed matter.

[48]  Mukherjee,et al.  Thermal expansion study of ordered and disordered Fe3Al: An effective approach for the determination of vibrational entropy. , 1996, Physical review letters.

[49]  Havlik,et al.  Heat-diffusion central peak in the elastic susceptibility of KSCN. , 1994, Physical review letters.

[50]  Roman Gladyshevskii,et al.  TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types , 1993 .

[51]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[52]  M. Zehetbauer,et al.  Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation , 1993 .

[53]  H. Okamoto Co-Sb (Cobalt-Antimony) , 1991 .

[54]  J. Genossar,et al.  A tilted‐plate capacitance displacement sensor , 1990 .

[55]  D. Cahill,et al.  Heat flow and lattice vibrations in glasses , 1989 .

[56]  E. Parthé,et al.  STRUCTURE TIDY– a computer program to standardize crystal structure data , 1987 .

[57]  T. Jarlborg,et al.  Heat-capacity analysis of a large number of A15-type compounds , 1983 .

[58]  W. Jeitschko,et al.  Preparation and structural investigations of antimonides with the LaFe4P12 structure , 1980 .

[59]  J. Chiu Deviations from linear temperature dependence of the electrical resistivity of V-Cr and Ta-W alloys , 1976 .

[60]  R. Griessen,et al.  Two capacitance dilatometers , 1973 .

[61]  P. Flinn,et al.  Mössbauer effect in 119Sn: Interpretation of isomer shifts and quadrupole splittings of stannous compounds , 1965 .

[62]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[63]  Joseph Callaway,et al.  Low-Temperature Lattice Thermal Conductivity , 1961 .

[64]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[65]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[66]  A. H. Wilson The second order electrical effects in metals , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[67]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[68]  A. Grytsiv,et al.  Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .

[69]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[70]  David C. Johnson,et al.  Synthesis of New Thermoelectrics Using Modulated Elemental Reactants , 1997 .

[71]  W. Fischer,et al.  DIDO95 and VOID95 - programs for the calculation of Dirichlet domains and coordination polyhedra , 1996 .

[72]  John L. Sarrao,et al.  Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids , 1993 .

[73]  F. Blatt,et al.  Physics of Electronic conduction in Solids , 1968 .