Universal and Dynamic Locally Repairable Codes with Maximal Recoverability via Sum-Rank Codes

Locally repairable codes (LRCs) are considered with equal or unequal localities, local distances and local field sizes. An explicit two-layer architecture with a sum-rank outer code are obtained, having disjoint local groups and achieving maximal recoverability (MR) for all families of local linear codes (MDS or not) simultaneously, up to a prescribed maximum locality r. Furthermore, the local linear codes (thus the localities, local distances and local fields) can be efficiently and dynamically modified without global recoding or changes in architecture or outer code, while preserving MR, easily adapting to new hot and cold data. In addition, local groups and file components can be added, removed or updated without global recoding. The construction requires global fields of size roughly $g^{r}$, for g local groups and maximum locality r. For equal localities, these global fields are smaller than those of previous MR-LRCs when $ r\leq h$ (global parities). For unequal localities, they provide an exponential field size reduction on all previous best known MR-LRCs. For bounded localities and a large number of local groups, the global erasure-correction complexity of the given construction is comparable to that of Tamo-Barg codes or Reed-Solomon codes with local replication, while local repair is as efficient as for the Cartesian product of the local codes. Reed-Solomon codes with local replication and Cartesian products are recovered from the given construction when $r = 1$ and $h = 0$, respectively. Finally, subextension subcodes and sum-rank alternant codes are introduced to obtain further exponential field size reductions, at the expense of lower information rates.

[1]  O. Ozan Koyluoglu,et al.  A General Construction for PMDS Codes , 2017, IEEE Communications Letters.

[2]  Guangda Hu,et al.  New constructions of SD and MR codes over small finite fields , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[3]  Mario Blaum,et al.  Partial-MDS Codes and Their Application to RAID Type of Architectures , 2012, IEEE Transactions on Information Theory.

[4]  Venkatesan Guruswami,et al.  Constructions of Maximally Recoverable Local Reconstruction Codes via Function Fields , 2018, IEEE Transactions on Information Theory.

[5]  P. Vijay Kumar,et al.  Codes with hierarchical locality , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[6]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[7]  Gretchen L. Matthews,et al.  Locally recoverable codes from algebraic curves and surfaces , 2017, ArXiv.

[8]  Chaoping Xing,et al.  Optimal Locally Repairable Codes Via Elliptic Curves , 2017, IEEE Transactions on Information Theory.

[9]  Eitan Yaakobi,et al.  Construction of Partial MDS and Sector-Disk Codes With Two Global Parity Symbols , 2016, IEEE Transactions on Information Theory.

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  T. Lam,et al.  Vandermonde and Wronskian matrices over division rings , 1988 .

[12]  Mario Blaum Extended Integrated Interleaved Codes Over Any Field With Applications to Locally Recoverable Codes , 2020, IEEE Transactions on Information Theory.

[13]  Bin Chen,et al.  Locally repairable codes with multiple (ri, δi)-localities , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[14]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[15]  Paul H. Siegel,et al.  Constructions of partial MDS codes over small fields , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[16]  Frank R. Kschischang,et al.  Universal and Dynamic Locally Repairable Codes With Maximal Recoverability via Sum-Rank Codes , 2019, IEEE Transactions on Information Theory.

[17]  Venkatesan Guruswami,et al.  How Long Can Optimal Locally Repairable Codes Be? , 2019, IEEE Trans. Inf. Theory.

[18]  Cheng Huang,et al.  Explicit Maximally Recoverable Codes With Locality , 2013, IEEE Transactions on Information Theory.

[19]  Henning Stichtenoth On the dimension of subfield subcodes , 1990, IEEE Trans. Inf. Theory.

[20]  Yuan Luo,et al.  Optimal Locally Repairable Codes of Distance 3 and 4 via Cyclic Codes , 2019, IEEE Transactions on Information Theory.

[21]  Dimitris S. Papailiopoulos,et al.  XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..

[22]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[23]  Umberto Martínez-Peñas,et al.  Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring , 2017, Journal of Algebra.

[24]  Eitan Yaakobi,et al.  Bounds and constructions of codes with multiple localities , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[25]  Jungwoo Lee,et al.  Locally Repairable Codes With Unequal Local Erasure Correction , 2018, IEEE Transactions on Information Theory.

[26]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[27]  Swanand Kadhe,et al.  Codes with unequal locality , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[28]  Chau Yuen,et al.  Optimal Locally Repairable Linear Codes , 2014, IEEE Journal on Selected Areas in Communications.

[29]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[30]  Paul H. Siegel,et al.  Multi-erasure locally recoverable codes over small fields , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  V. Lalitha,et al.  Maximally Recoverable Codes with Hierarchical Locality , 2019, 2019 National Conference on Communications (NCC).

[32]  Alessandro Neri,et al.  Random construction of partial MDS codes , 2018, Des. Codes Cryptogr..

[33]  Minghua Chen,et al.  On the Maximally Recoverable Property for Multi-Protection Group Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[34]  P. Vijay Kumar,et al.  Codes With Local Regeneration and Erasure Correction , 2014, IEEE Transactions on Information Theory.

[35]  Dimitris S. Papailiopoulos,et al.  Optimal locally repairable codes and connections to matroid theory , 2013, 2013 IEEE International Symposium on Information Theory.

[36]  Shubhangi Saraf,et al.  Maximally Recoverable Codes for Grid-like Topologies , 2016, SODA.

[37]  Venkatesan Guruswami,et al.  On Maximally Recoverable Local Reconstruction Codes , 2017, Electron. Colloquium Comput. Complex..

[38]  P. Vijay Kumar,et al.  A unified construction of space-time codes with optimal rate-diversity tradeoff , 2005, IEEE Transactions on Information Theory.

[39]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[40]  Bartolomeu F. Uchôa Filho,et al.  Multishot Codes for Network Coding Using Rank-Metric Codes , 2010, 2010 Third IEEE International Workshop on Wireless Network Coding.

[41]  Frank R. Kschischang,et al.  Reliable and Secure Multishot Network Coding Using Linearized Reed-Solomon Codes , 2019, IEEE Transactions on Information Theory.

[42]  Sriram Vishwanath,et al.  Optimal Locally Repairable and Secure Codes for Distributed Storage Systems , 2012, IEEE Transactions on Information Theory.

[43]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[44]  Minghua Chen,et al.  Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).

[45]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[46]  Luis Alfonso Lastras-Montaño,et al.  Reliable Memories with Subline Accesses , 2007, 2007 IEEE International Symposium on Information Theory.

[47]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[48]  Frédérique Oggier,et al.  Self-repairing homomorphic codes for distributed storage systems , 2010, 2011 Proceedings IEEE INFOCOM.