Ubiquitin modifications

Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.

[1]  Oliver F. Lange,et al.  Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution , 2008, Science.

[2]  K. Rittinger,et al.  LUBAC synthesizes linear ubiquitin chains via a thioester intermediate , 2012, EMBO reports.

[3]  David Komander,et al.  Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages , 2012, Nature Reviews Molecular Cell Biology.

[4]  Tharan Srikumar,et al.  The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesisThe linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis , 2013 .

[5]  L. Dick,et al.  Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes , 2011, The Biochemical journal.

[6]  Zhijian J. Chen,et al.  Direct Activation of Protein Kinases by Unanchored Polyubiquitin Chains , 2009, Nature.

[7]  Katrin Rittinger,et al.  NEMO oligomerization and its ubiquitin-binding properties , 2009, The Biochemical journal.

[8]  P. Kim,et al.  Deubiquitinating enzymes regulate PARK2-mediated mitophagy , 2015, Autophagy.

[9]  Arnab De,et al.  The deubiquitinase activity of A20 is dispensable for NF‐κB signaling , 2014, EMBO reports.

[10]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[11]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[12]  Zhijian J. Chen,et al.  K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. , 2014, Molecular cell.

[13]  J. Chin,et al.  Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.

[14]  Y. Saeki,et al.  Phosphorylated ubiquitin chain is the genuine Parkin receptor , 2015, The Journal of cell biology.

[15]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[16]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[17]  M. Thome Faculty Opinions recommendation of OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. , 2013 .

[18]  Jimin Wang,et al.  A Ubl/ubiquitin switch in the activation of Parkin , 2015, The EMBO journal.

[19]  J. Chin,et al.  An Ankyrin-repeat ubiquitin binding domain determines TRABID’s specificity for atypical ubiquitin chains , 2011, Nature Structural &Molecular Biology.

[20]  A. Prescott,et al.  Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation , 2015, EMBO reports.

[21]  E. Solomon,et al.  BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. , 2004, Human molecular genetics.

[22]  Mair E. M. Thomas,et al.  Efficient Internalization of MHC I Requires Lysine-11 and Lysine-63 Mixed Linkage Polyubiquitin Chains , 2009, Traffic.

[23]  D. Komander,et al.  Mechanism of phospho-ubiquitin induced PARKIN activation , 2015, Nature.

[24]  E. Verdin,et al.  50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond , 2014, Nature Reviews Molecular Cell Biology.

[25]  Hongbo Hu,et al.  Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination , 2016, The Journal of experimental medicine.

[26]  Kalle Gehring,et al.  Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation , 2013, Science.

[27]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[28]  M. Bienz,et al.  Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. , 2008, Genes & development.

[29]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[30]  J. Chin,et al.  Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. , 2010, Nature chemical biology.

[31]  C. Lima,et al.  Structural and functional insights to ubiquitin-like protein conjugation. , 2014, Annual review of biophysics.

[32]  D. Y. Lin,et al.  Biochemical and Structural Studies of a HECT-like Ubiquitin Ligase from Escherichia coli O157:H7 , 2010, The Journal of Biological Chemistry.

[33]  F. Melchior,et al.  Sumoylation: a regulatory protein modification in health and disease. , 2013, Annual review of biochemistry.

[34]  R. Dohmen,et al.  SUMO-targeted ubiquitin ligases. , 2014, Biochimica et biophysica acta.

[35]  Ivan Dikic,et al.  Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. , 2012, Annual review of biochemistry.

[36]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[37]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[38]  N. Hattori,et al.  Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering , 2014, PLoS genetics.

[39]  H. McBride,et al.  A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles , 2014, The EMBO journal.

[40]  J. Casanova,et al.  Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection , 2014, eLife.

[41]  T. Sixma,et al.  The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. , 2011, Chemistry & biology.

[42]  Rachel E. Klevit,et al.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids , 2011, Nature.

[43]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[44]  R. Singh,et al.  Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System* , 2012, Molecular & Cellular Proteomics.

[45]  Andreas Martin,et al.  Conformational switching of the 26S proteasome enables substrate degradation , 2013, Nature Structural &Molecular Biology.

[46]  I. Dikic,et al.  Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis , 2014, eLife.

[47]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[48]  D. Komander,et al.  Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner , 2014, EMBO reports.

[49]  Matthias Mann,et al.  Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases , 2016, eLife.

[50]  John Rush,et al.  Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[51]  P. Cohen,et al.  The origins of protein phosphorylation , 2002, Nature Cell Biology.

[52]  R. Kelley,et al.  Engineering and structural characterization of a linear polyubiquitin-specific antibody. , 2012, Journal of molecular biology.

[53]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[54]  H. Busch,et al.  Presence of protein A24 in rat liver nucleosomes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Strieter,et al.  Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains , 2014, Biochemistry.

[56]  David Klenerman,et al.  Ubiquitin chain conformation regulates recognition and activity of interacting proteins , 2012, Nature.

[57]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[58]  H. Hirano,et al.  Contribution of Lysine 11-linked Ubiquitination to MIR2-mediated Major Histocompatibility Complex Class I Internalization* , 2010, The Journal of Biological Chemistry.

[59]  Sebastian A. Wagner,et al.  Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. , 2013, Cell reports.

[60]  Jinfeng Liu,et al.  Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation , 2015, Nature.

[61]  Sebastian A. Wagner,et al.  OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. , 2013, Molecular cell.

[62]  Mark Ellisman,et al.  NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria , 2016, Cell.

[63]  T. Shaler,et al.  Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools , 2011, Nature Methods.

[64]  B. Kim,et al.  Identification of a Novel Anti-apoptotic E3 Ubiquitin Ligase That Ubiquitinates Antagonists of Inhibitor of Apoptosis Proteins SMAC, HtrA2, and ARTS* , 2013, The Journal of Biological Chemistry.

[65]  J. Harper,et al.  The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. , 2015, Molecular cell.

[66]  Dorte B. Bekker-Jensen,et al.  Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns , 2012, Cell reports.

[67]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[68]  P. Verstreken,et al.  The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy , 2014, Human molecular genetics.

[69]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[70]  K. Hofmann,et al.  TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes , 2013, The EMBO journal.

[71]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[72]  Nobuhiro Nakamura,et al.  Ubiquitin System , 2018, International journal of molecular sciences.

[73]  Edward L. Huttlin,et al.  Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response. , 2015, Molecular cell.

[74]  V. Pascual,et al.  Immunodeficiency, auto-inflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency , 2012, Nature Immunology.

[75]  D. O. Morgan,et al.  Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes* , 2011, The Journal of Biological Chemistry.

[76]  F. Förster,et al.  Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy , 2012, Proceedings of the National Academy of Sciences.

[77]  D. Campbell,et al.  K29-Selective Ubiquitin Binding Domain Reveals Structural Basis of Specificity and Heterotypic Nature of K29 Polyubiquitin , 2015, Molecular cell.

[78]  R. Deshaies,et al.  Detection of Sequential Polyubiquitylation on a Millisecond Time-Scale , 2009, Nature.

[79]  Cyrus Chothia,et al.  Ubiquitin--molecular mechanisms for recognition of different structures. , 2010, Current opinion in structural biology.

[80]  C. Pickart,et al.  A HECT Domain E3 Enzyme Assembles Novel Polyubiquitin Chains* , 2001, The Journal of Biological Chemistry.

[81]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[82]  G. Dorn,et al.  PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria , 2013, Science.

[83]  P. Bastiaens,et al.  Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. , 2012, Molecular cell.

[84]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[85]  Christine Yu,et al.  K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. , 2010, Molecular cell.

[86]  Gabriel C. Lander,et al.  Complete subunit architecture of the proteasome regulatory particle , 2011, Nature.

[87]  Zhijian J. Chen,et al.  Regulation of NF-κB by ubiquitination. , 2013, Current opinion in immunology.

[88]  Miratul M. K. Muqit,et al.  PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 , 2012, Open Biology.

[89]  Keiji Tanaka,et al.  Defective immune responses in mice lacking LUBAC‐mediated linear ubiquitination in B cells , 2013, The EMBO journal.

[90]  Kazuhiro Iwai,et al.  Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex , 2011, Proceedings of the National Academy of Sciences.

[91]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[92]  H. Ji,et al.  Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. , 2014, Cancer cell.

[93]  David Komander,et al.  Emerging roles for Lys11-linked polyubiquitin in cellular regulation. , 2011, Trends in biochemical sciences.

[94]  Kay Hofmann,et al.  OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin , 2013, Cell.

[95]  Christine Yu,et al.  Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies , 2008, Cell.

[96]  A. Whitworth,et al.  Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations , 2011, Open Biology.

[97]  S. Gygi,et al.  The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains , 2015, Cell reports.

[98]  J. Yates,et al.  Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain , 2004, Nature Cell Biology.

[99]  J. Inoue,et al.  Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity , 2015, Nature Structural &Molecular Biology.

[100]  John Kuriyan,et al.  The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2 , 2011, Cell.

[101]  H. Nishimasu,et al.  Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF‐κB regulation , 2012, The EMBO journal.

[102]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[103]  D. Rigden,et al.  Deubiquitylases from genes to organism. , 2013, Physiological reviews.

[104]  S. Gygi,et al.  A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis* , 2011, Molecular & Cellular Proteomics.

[105]  S. Gygi,et al.  Ubiquitin Chains Are Remodeled at the Proteasome by Opposing Ubiquitin Ligase and Deubiquitinating Activities , 2006, Cell.

[106]  S. Gygi,et al.  S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains , 2009, The EMBO journal.

[107]  Patrick G. A. Pedrioli,et al.  Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains , 2013, Proceedings of the National Academy of Sciences.

[108]  D. Campbell,et al.  Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations , 2015, The Biochemical journal.

[109]  R. Aebersold,et al.  RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. , 2015, Cell reports.

[110]  Yusuke Sato,et al.  Structural basis for specific recognition of Lys 63‐linked polyubiquitin chains by NZF domains of TAB2 and TAB3 , 2009, The EMBO journal.

[111]  M. Kirschner,et al.  Substrate degradation by the proteasome: A single-molecule kinetic analysis , 2015, Science.

[112]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[113]  I. Dikic,et al.  A20 inhibits LUBAC‐mediated NF‐κB activation by binding linear polyubiquitin chains via its zinc finger 7 , 2012, The EMBO journal.

[114]  Kay Hofmann,et al.  Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain , 2009, Nature Structural &Molecular Biology.

[115]  M. Mann,et al.  Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry* , 2013, Molecular & Cellular Proteomics.

[116]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[117]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[118]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[119]  B. Schulman,et al.  Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. , 2013, Structure.

[120]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[121]  J. Harper,et al.  Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response , 2015, Proceedings of the National Academy of Sciences.

[122]  Claire Heride,et al.  The demographics of the ubiquitin system. , 2015, Trends in cell biology.

[123]  S. Gygi,et al.  Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology , 2006, Nature Cell Biology.

[124]  K. Hofmann,et al.  Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 , 2014, The Biochemical journal.

[125]  J Wade Harper,et al.  Quantifying ubiquitin signaling. , 2015, Molecular cell.

[126]  S. Maddika,et al.  HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion. , 2015, Cellular signalling.

[127]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[128]  Nobutaka Hattori,et al.  PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy , 2012, Scientific Reports.

[129]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[130]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[131]  M. Rapé,et al.  Enhanced Protein Degradation by Branched Ubiquitin Chains , 2014, Cell.

[132]  C. Ware,et al.  Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation , 2015, Nature.

[133]  M. Rapé,et al.  K11-linked ubiquitin chains as novel regulators of cell division. , 2011, Trends in cell biology.

[134]  Michael H. Olma,et al.  Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. , 2014, Molecular cell.

[135]  W. Wurst,et al.  The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. , 2013, Molecular cell.

[136]  M. Mann,et al.  Uncovering Global SUMOylation Signaling Networks in a Site-Specific Manner , 2014, Nature Structural &Molecular Biology.

[137]  P. Kaiser,et al.  A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome , 2006, Nature Cell Biology.

[138]  Ivan Dikic,et al.  Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP , 2013, Nature.

[139]  S. Wing,et al.  Ataxin-3 Deubiquitination Is Coupled to Parkin Ubiquitination via E2 Ubiquitin-conjugating Enzyme* , 2011, The Journal of Biological Chemistry.

[140]  K. Iwai,et al.  Generation and physiological roles of linear ubiquitin chains , 2012, BMC Biology.

[141]  K. Lage,et al.  Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues , 2012, Nature Communications.

[142]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[143]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[144]  C. Elly,et al.  SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex , 2016, Nature Immunology.

[145]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[146]  David Komander,et al.  Structure of the human Parkin ligase domain in an autoinhibited state , 2013, The EMBO journal.

[147]  Christine Yu,et al.  USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria , 2015, Nature Cell Biology.

[148]  D. Komander,et al.  Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest) , 2015, Nature Protocols.

[149]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[150]  M. Schmidt-Supprian,et al.  NEMO interaction with linear and K 63 ubiquitin chains contributes to NF-κ B activation , 2011 .

[151]  D. Komander,et al.  Cezanne regulates E2F1-dependent HIF2α expression , 2015, Journal of Cell Science.

[152]  J. Casanova,et al.  Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia , 2015, The Journal of experimental medicine.

[153]  K. Iwai,et al.  Linear ubiquitin chains: NF-κB signalling, cell death and beyond , 2014, Nature Reviews Molecular Cell Biology.

[154]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[155]  J. Kuriyan,et al.  Crystal Structure of a Ube2S-Ubiquitin Conjugate , 2016, PloS one.

[156]  S. Freund,et al.  Assembly, analysis and architecture of atypical ubiquitin chains , 2013, Nature Structural &Molecular Biology.

[157]  G. Yap,et al.  Faculty Opinions recommendation of The ubiquitin ligase parkin mediates resistance to intracellular pathogens. , 2013 .

[158]  R. Baer,et al.  The BRCA1/BARD1 Heterodimer Assembles Polyubiquitin Chains through an Unconventional Linkage Involving Lysine Residue K6 of Ubiquitin* , 2003, Journal of Biological Chemistry.

[159]  Junmin Peng,et al.  Characterization of polyubiquitin chain structure by middle-down mass spectrometry. , 2008, Analytical chemistry.

[160]  P. Mercier,et al.  Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis , 2015, The EMBO journal.

[161]  S. Fields,et al.  Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation , 2013, Nature Methods.

[162]  A. García-Sastre,et al.  Unanchored ubiquitin in virus uncoating , 2014, Science.

[163]  Elisabeth L. Moussaud-Lamodière,et al.  (Patho‐)physiological relevance of PINK1‐dependent ubiquitin phosphorylation , 2015, EMBO reports.

[164]  Steven P Gygi,et al.  Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages* , 2007, Journal of Biological Chemistry.

[165]  Nobutaka Hattori,et al.  p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[166]  J. Corvol,et al.  Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1 , 2015, The EMBO journal.

[167]  David Komander,et al.  Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis , 2014, The EMBO journal.

[168]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[169]  T. Shaler,et al.  Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases , 2013, Nature Communications.

[170]  R. Youle,et al.  PINK1 is degraded through the N-end rule pathway , 2013, Autophagy.

[171]  P. Thibault,et al.  Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions* , 2013, Molecular & Cellular Proteomics.

[172]  Mathieu Courcelles,et al.  A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells* , 2010, Molecular & Cellular Proteomics.

[173]  M. Peng,et al.  Toward a comprehensive characterization of a human cancer cell phosphoproteome. , 2013, Journal of proteome research.

[174]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[175]  Min-Seok Kwon,et al.  Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen , 2009, Proteomics.

[176]  A. Israël,et al.  NEMO specifically recognizes K63‐linked poly‐ubiquitin chains through a new bipartite ubiquitin‐binding domain , 2009, The EMBO journal.

[177]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[178]  D. Swaney,et al.  Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome‐wide turnover , 2015, EMBO reports.

[179]  Y. Saeki,et al.  Suppression of LUBAC‐mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN , 2014, Genes to cells : devoted to molecular & cellular mechanisms.

[180]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[181]  R. Youle,et al.  Self and nonself: how autophagy targets mitochondria and bacteria. , 2014, Cell host & microbe.

[182]  J. Boeke,et al.  Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling , 2012, Nature Methods.

[183]  Zhijian J. Chen,et al.  TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. , 2004, Molecular cell.

[184]  S. Martens,et al.  Mechanisms of Selective Autophagy , 2016, Journal of molecular biology.

[185]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[186]  H. Walden,et al.  Autoregulation of Parkin activity through its ubiquitin‐like domain , 2011, The EMBO journal.

[187]  J. Martinez-Barbera,et al.  HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. , 2014, Cell reports.

[188]  B. Coulombe,et al.  USP8 regulates mitophagy by removing K6‐linked ubiquitin conjugates from parkin , 2014, The EMBO journal.

[189]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[190]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[191]  S. Gygi,et al.  Autoubiquitination of the 26S Proteasome on Rpn13 Regulates Breakdown of Ubiquitin Conjugates , 2014, The EMBO journal.

[192]  P. R. Elliott,et al.  OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis , 2013, Cell.

[193]  Christoph H Emmerich,et al.  Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. , 2009, Molecular cell.

[194]  P. R. Elliott,et al.  Assembly and Specific Recognition of K29- and K33-Linked Polyubiquitin , 2015, Molecular cell.

[195]  K. Rittinger,et al.  LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes , 2015, Cell reports.

[196]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[197]  J. Kanno,et al.  Ubiquitin acetylation inhibits polyubiquitin chain elongation , 2015, EMBO reports.

[198]  D. Komander,et al.  Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages , 2015, bioRxiv.

[199]  G. Mills,et al.  Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression , 2011, Oncogene.

[200]  P. R. Elliott,et al.  Molecular Basis and Regulation of OTULIN-LUBAC Interaction , 2014, Molecular cell.

[201]  U. Mayor,et al.  USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death , 2015, EMBO reports.