Numerical analysis of a transient eddy current axisymmetric problem involving velocity terms

The aim of this article is to analyze a transient axisymmetric electromagnetic model involving velocity terms in the Ohm's law. To this end, we introduce a time-dependent weak formulation leading to a degenerate parabolic problem and establish its well posedness.We propose a finite-element method for space discretization and prove well posedness and error estimates. Then, we combine it with a backward Euler time discretization and prove stability and error estimates. Finally, numerical results assessing the performance of the method are reported. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011

[1]  B. Mercier,et al.  Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .

[2]  Habib Ammari,et al.  A Justification of Eddy Currents Model for the Maxwell Equations , 2000, SIAM J. Appl. Math..

[3]  Alfredo Bermúdez,et al.  Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces , 2007, Adv. Comput. Math..

[4]  M. Zlámal,et al.  Finite element solution of quasistationary nonlinear magnetic field , 1982 .

[5]  Joseph E. Pasciak,et al.  The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations , 2006, Math. Comput..

[6]  Mouloud Feliachi,et al.  Application of macro-element and finite element coupling for the behavior analysis of magnetoforming systems , 1999 .

[7]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[8]  A. Bermúdez,et al.  A FEM/BEM for axisymmetric electromagnetic and thermal modelling of induction furnaces , 2007 .

[9]  Ashish Kapoor,et al.  Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs , 2003 .

[10]  Alfredo Bermúdez,et al.  Numerical analysis of a finite-element method for the axisymmetric eddy current model of an induction furnace , 2010 .

[11]  Addendum to the paper “Finite element solution of quasistationary nonlinear magnetic field” , 1983 .

[12]  Heribert Blum,et al.  Algorithmic formulation and numerical implementation of coupled electromagnetic‐inelastic continuum models for electromagnetic metal forming , 2006 .

[13]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[14]  J. D. Lavers State of the art of numerical modeling for induction processes , 2008 .

[15]  A. Bermúdez,et al.  Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace , 2009 .