On Semi-Analytical Procedure for Detecting Limit Cycle bifurcations

This paper reports some computation of periodic solutions arising from Hopf bifurcations in order to build up a more accurate procedure for semi-analytical approximations to detect limit cycle bifurcations. The approximation formulas are derived using nonlinear feedback systems theory and the harmonic balance method. The monodromy matrix is computed for several simple nonlinear flows to detect the first bifurcation of the cycles in the neighborhood of the original Hopf bifurcation.

[1]  E. Butcher,et al.  SYMBOLIC COMPUTATION OF FUNDAMENTAL SOLUTION MATRICES FOR LINEAR TIME-PERIODIC DYNAMICAL SYSTEMS , 1997 .

[2]  Alberto Tesi,et al.  Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics , 1996, Autom..

[3]  Marco Gilli,et al.  Analysis of stability and bifurcations of limit cycles in Chua's circuit through the harmonic-balance approach , 1999 .

[4]  Subhash C. Sinha,et al.  Symbolic Computation of Local Stability and Bifurcation Surfaces for Nonlinear Time-Periodic Systems , 1998 .

[5]  Guanrong Chen,et al.  Detecting period-doubling bifurcation: an approximate monodromy matrix approach , 2001, Autom..

[6]  Richard H. Rand Analytical approximation for period-doubling following a hopf bifurcation , 1989 .

[7]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Guanrong Chen,et al.  Hopf Bifurcation Analysis: A Frequency Domain Approach , 1996 .

[9]  Y. Kuznetsov,et al.  Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps: physics , 1993 .

[10]  C. Di Bello,et al.  Asymptotic formulas in nearly sinusoidal nonlinear oscillators , 1996 .

[11]  René Thomas THE RÖSSLER EQUATIONS REVISITED IN TERMS OF FEEDBACK CIRCUITS , 1999 .

[12]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[13]  Warwick Tucker,et al.  Computing accurate Poincaré maps , 2002 .

[14]  R. Seydel Practical bifurcation and stability analysis : from equilibrium to chaos , 1994 .

[15]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[16]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[17]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[18]  Peter Schuster,et al.  Bifurcation Dynamics of Three-Dimensional Systems , 2000, Int. J. Bifurc. Chaos.

[19]  A. I. Mees,et al.  Dynamics of feedback systems , 1981 .

[20]  M. Houssni,et al.  Symmetry-breaking and first period-doubling following a hopf bifurcation in a three dimensional system , 1995 .

[21]  Alejandro J. Rodríguez-Luis,et al.  Analytical Prediction of the Two First Period-Doublings in a Three-Dimensional System , 2000, Int. J. Bifurc. Chaos.

[22]  René Thomas,et al.  DETERMINISTIC CHAOS SEEN IN TERMS OF FEEDBACK CIRCUITS: ANALYSIS, SYNTHESIS, "LABYRINTH CHAOS" , 1999 .