Circulating microRNAs in cellular and antibody-mediated heart transplant rejection.

[1]  K. Breathett,et al.  Racial and ethnic disparities in heart failure: current state and future directions , 2021, Current opinion in cardiology.

[2]  S. Russell,et al.  Cell-Free DNA to Detect Heart Allograft Acute Rejection. , 2021, Circulation.

[3]  P. Lal,et al.  Circulating Donor Heart Exosome Profiling Enables Noninvasive Detection of Antibody-mediated Rejection , 2020, Transplantation direct.

[4]  K. Khush,et al.  The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; focus on deceased donor characteristics. , 2020, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[5]  M. Crespo-Leiro,et al.  ORIGINAL CLINICAL SCIENCECirculating miR-181a-5p as a new biomarker for acute cellular rejection in heart transplantation. , 2020, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[6]  B. Niu,et al.  Red Blood Cells as Potential Repositories of MicroRNAs in the Circulatory System , 2020, Frontiers in Genetics.

[7]  Fei Wang,et al.  miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database , 2019, Nucleic Acids Res..

[8]  Emily E. Burke,et al.  Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods , 2018, BMC Genomics.

[9]  G. Ewald,et al.  Noninvasive detection of graft injury after heart transplant using donor‐derived cell‐free DNA: A prospective multicenter study , 2019, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[10]  Trieu Nguyen,et al.  MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics , 2018, Laboratory Investigation.

[11]  A. Angelini,et al.  MicroRNA signatures in cardiac biopsies and detection of allograft rejection. , 2018, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[12]  W. Book,et al.  Racial differences in the development of de-novo donor-specific antibodies and treated antibody-mediated rejection after heart transplantation. , 2017, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[13]  J. Port,et al.  MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential , 2017, Current Heart Failure Reports.

[14]  G. Ni,et al.  Role of miR-29 as marker of risk of acute rejection after heart transplant , 2017, British journal of biomedical science.

[15]  N. Iwai,et al.  Absence of miR-182 Augments Cardiac Allograft Survival , 2017, Transplantation.

[16]  X. Jouven,et al.  Gene Expression Profiling for the Identification and Classification of Antibody-Mediated Heart Rejection , 2017, Circulation.

[17]  B. Coleman,et al.  Racial and ethnic disparities in outcomes after heart transplantation: A systematic review of contributing factors and future directions to close the outcomes gap. , 2016, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[18]  J. Kobashigawa,et al.  Antibody-mediated rejection in cardiac transplantation: emerging knowledge in diagnosis and management: a scientific statement from the American Heart Association. , 2015, Circulation.

[19]  R. Higgins,et al.  Racial Disparities in Outcomes of Adult Heart Transplantation , 2015, Circulation.

[20]  G. Ewald,et al.  Gene Expression Profiling to Study Racial Differences after Heart Transplantation , 2015, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[21]  X. Jouven,et al.  MicroRNAs as non-invasive biomarkers of heart transplant rejection. , 2014, European heart journal.

[22]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[23]  Daniel Bernstein,et al.  Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection , 2014, Science Translational Medicine.

[24]  A. Angelini,et al.  The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. , 2013, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[25]  H. Ross,et al.  A Survey of Current Practice for Antibody‐Mediated Rejection in Heart Transplantation , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[26]  O. Gidlöf,et al.  Altered serum miRNA profiles during acute rejection after heart transplantation: potential for non-invasive allograft surveillance. , 2013, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[27]  G. Berry,et al.  Concordance Among Pathologists in the Second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) , 2012, Transplantation.

[28]  Salvatore Campo,et al.  Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). , 2012, International journal of oncology.

[29]  X. Xiong,et al.  Differential Expression of MicroRNAs During Allograft Rejection , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[30]  A. Tijsen,et al.  Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? , 2012, Circulation research.

[31]  S. Quake,et al.  Universal noninvasive detection of solid organ transplant rejection , 2011, Proceedings of the National Academy of Sciences.

[32]  J. Kobashigawa,et al.  Benefit of immune monitoring in heart transplant patients using ATP production in activated lymphocytes. , 2010, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[33]  K. Gauvreau,et al.  Socioeconomic position, ethnicity, and outcomes in heart transplant recipients. , 2010, The American journal of cardiology.

[34]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[35]  M. Fishbein,et al.  Asymptomatic antibody-mediated rejection after heart transplantation predicts poor outcomes. , 2009, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[36]  T. Klingler,et al.  Noninvasive Discrimination of Rejection in Cardiac Allograft Recipients Using Gene Expression Profiling , 2006, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[37]  B. Reiser,et al.  Estimation of the Youden Index and its Associated Cutoff Point , 2005, Biometrical journal. Biometrische Zeitschrift.

[38]  Silviu Itescu,et al.  Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. , 2005, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[39]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[40]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[41]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .