The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation.

The use of particle-impact coulometry in identifying and quantifying nanoparticles tagged (or labelled) with electroactive molecules is demonstrated via the detection of 1,4-nitrothiophenol-tagged silver nanoparticles in aqueous dispersion at potentials more negative than -0.17 V (vs. Ag/AgCl, the reduction potential of nitrothiophenol) via monitoring of particle-electrode collisions.

[1]  I. Rubinstein Voltammetric study of nitrobenzene and related compounds on solid electrodes in aqueous solution , 1985 .

[2]  M. Morita,et al.  Electrochemical Behavior of a 4-Nitrothiophenol Modified Electrode Prepared by the Self-Assembly Method , 1995 .

[3]  H. Abruña,et al.  Ultrafast voltammetry of adsorbed redox active dendrimers with nanometric resolution: an electrochemical microtome. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  H. Abruña,et al.  Precise adjustment of nanometric-scale diffusion layers within a redox dendrimer molecule by ultrafast cyclic voltammetry: an electrochemical nanometric microtome. , 2001, Chemistry.

[5]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[6]  Masa-aki Suzuki,et al.  Laser photolysis of silver colloid prepared by citric acid reduction method. , 2005, The journal of physical chemistry. B.

[7]  Jian-hui Jiang,et al.  Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. , 2006, Analytical biochemistry.

[8]  Jeffrey T La Belle,et al.  Nanoparticle-based sensing of glycan-lectin interactions. , 2006, Journal of the American Chemical Society.

[9]  Xiaoyin Xiao,et al.  Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. , 2007, Journal of the American Chemical Society.

[10]  A. Bard Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry By Jean-Michel Savéant (Université de Paris 7, Denis Diderot). J. Wiley & Sons, Inc.: Hoboken, NJ. 2006. xviii + 486 pp. $135. ISBN 0-471-44573-8. , 2007 .

[11]  Alexander Pyatenko,et al.  Synthesis of Spherical Silver Nanoparticles with Controllable Sizes in Aqueous Solutions , 2007 .

[12]  Joseph Irudayaraj,et al.  Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. , 2007, Analytical chemistry.

[13]  R. Compton,et al.  Electroanalytical Exploitation of Nitroso Phenyl Modified Carbon-Thiol Interactions: Application to the Low Voltage Determination of Thiols , 2007 .

[14]  Shuming Nie,et al.  Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes , 2008, Proceedings of the National Academy of Sciences.

[15]  Xiaoyin Xiao,et al.  Current transients in single nanoparticle collision events. , 2008, Journal of the American Chemical Society.

[16]  A. Bard Book Review of Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2008 .

[17]  H. Zhou,et al.  Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. , 2008, Analytical chemistry.

[18]  Joseph Irudayaraj,et al.  PCR-free quantification of multiple splice variants in a cancer gene by surface-enhanced Raman spectroscopy. , 2009, The journal of physical chemistry. B.

[19]  A. Bard,et al.  Single Nanoparticle Electrocatalysis: Effect of Monolayers on Particle and Electrode on Electron Transfer , 2009 .

[20]  Zhiqiang Lu,et al.  Nanoparticle-based, fluorous-tag-driven DNA detection. , 2009, Angewandte Chemie.

[21]  Zhi Huang,et al.  A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry , 2009, Journal of the American Society for Mass Spectrometry.

[22]  Yaw-Wen Yang,et al.  Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy. , 2009, Colloids and surfaces. B, Biointerfaces.

[23]  A. Bard,et al.  Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. , 2010, Journal of the American Chemical Society.

[24]  Zhengbo Chen,et al.  An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification , 2010 .

[25]  Chien Chou,et al.  Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. , 2010, Analytical chemistry.

[26]  Jing Liu,et al.  Superquenching acridinium ester chemiluminescence by gold nanoparticles for DNA detection. , 2010, Chemical communications.

[27]  Jiming Hu,et al.  Core-shell nanostructures for ultrasensitive detection of α-thrombin. , 2010, Nanoscale.

[28]  D. R. Bae,et al.  Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[29]  Richard G. Compton,et al.  Nanoparticle–electrode collision processes: The electroplating of bulk cadmium on impacting silver nanoparticles , 2011 .

[30]  Richard G Compton,et al.  The electrochemical detection and characterization of silver nanoparticles in aqueous solution. , 2011, Angewandte Chemie.

[31]  R. Compton,et al.  Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Jean-Louis Marty,et al.  Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. , 2011, Biosensors & bioelectronics.

[33]  Ian J. Cutress,et al.  Nanoparticle–electrode collision processes: Investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles , 2011 .

[34]  B. Zhang,et al.  Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes--theory and experiments. , 2011, Physical chemistry chemical physics : PCCP.

[35]  A. Ray,et al.  Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin , 2011, Journal of The Royal Society Interface.

[36]  Martin Pumera,et al.  Nanomaterials meet microfluidics. , 2011, Chemical communications.

[37]  R. Compton,et al.  Making contact: charge transfer during particle–electrode collisions , 2012 .