Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways

Striatal GABAergic microcircuits are critical for motor function, yet their properties remain enigmatic due to difficulties in targeting striatal interneurons for electrophysiological analysis. Here, we use Lhx6-GFP transgenic mice to identify GABAergic interneurons and investigate their regulation of striatal direct- and indirect-pathway medium spiny neurons (MSNs). We find that the two major interneuron populations, persistent low-threshold spiking (PLTS) and fast spiking (FS) interneurons, differ substantially in their excitatory inputs and inhibitory outputs. Excitatory synaptic currents recorded from PLTS interneurons are characterized by a small, nonrectifying AMPA receptor-mediated component and a NMDA receptor-mediated component. In contrast, glutamatergic synaptic currents in FS interneurons have a large, strongly rectifying AMPA receptor-mediated component, but no detectable NMDA receptor-mediated responses. Consistent with their axonal morphology, the output of individual PLTS interneurons is relatively weak and sparse, whereas FS interneurons are robustly connected to MSNs and other FS interneurons and appear to mediate the bulk of feedforward inhibition. Synaptic depression of FS outputs is relatively insensitive to firing frequency, and dynamic-clamp experiments reveal that these short-term dynamics enable feedforward inhibition to remain efficacious across a broad frequency range. Surprisingly, we find that FS interneurons preferentially target direct-pathway MSNs over indirect-pathway MSNs, suggesting a potential mechanism for rapid pathway-specific regulation of striatal output pathways.

[1]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[2]  Y. Ben-Ari,et al.  Dopamine-Deprived Striatal GABAergic Interneurons Burst and Generate Repetitive Gigantic IPSCs in Medium Spiny Neurons , 2009, The Journal of Neuroscience.

[3]  Bruce P. Graham,et al.  Nitric Oxide Is a Volume Transmitter Regulating Postsynaptic Excitability at a Glutamatergic Synapse , 2008, Neuron.

[4]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[5]  S. D. Lac,et al.  Frequency-Independent Synaptic Transmission Supports a Linear Vestibular Behavior , 2008, Neuron.

[6]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[7]  J. Berke Uncoordinated Firing Rate Changes of Striatal Fast-Spiking Interneurons during Behavioral Task Performance , 2008, The Journal of Neuroscience.

[8]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[9]  B. Gloss,et al.  Drd1a-tdTomato BAC Transgenic Mice for Simultaneous Visualization of Medium Spiny Neurons in the Direct and Indirect Pathways of the Basal Ganglia , 2008, The Journal of Neuroscience.

[10]  Violeta G. Lopez-Huerta,et al.  Presynaptic Modulation by Somatostatin in the Neostriatum , 2008, Neurochemical Research.

[11]  I. Soltesz,et al.  Cell type–specific gating of perisomatic inhibition by cholecystokinin , 2007, Nature Neuroscience.

[12]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[13]  Cyriel M. A. Pennartz,et al.  Membrane properties and synaptic connectivity of fast-spiking interneurons in rat ventral striatum , 2007, Brain Research.

[14]  J. Bargas,et al.  Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons , 2007, Neuroscience.

[15]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[16]  Robert C. Malenka,et al.  Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models , 2007, Nature.

[17]  T. Wichmann,et al.  GABAergic circuits in the basal ganglia and movement disorders. , 2007, Progress in brain research.

[18]  Charles J. Wilson GABAergic inhibition in the neostriatum. , 2007, Progress in brain research.

[19]  I. Cobos,et al.  Cellular patterns of transcription factor expression in developing cortical interneurons. , 2006, Cerebral cortex.

[20]  F. Gonon,et al.  Cortical Inputs and GABA Interneurons Imbalance Projection Neurons in the Striatum of Parkinsonian Rats , 2006, The Journal of Neuroscience.

[21]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[22]  Bertrand Z. Yeung,et al.  Vulnerability of Dentate Granule Cells to Disruption of Arc Expression in Human Amyloid Precursor Protein Transgenic Mice , 2005, The Journal of Neuroscience.

[23]  M. DiFiglia,et al.  Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[25]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[26]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[27]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[28]  Charles J. Wilson,et al.  Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum , 2004, The Journal of Neuroscience.

[29]  A. Grace,et al.  The Nitric Oxide-Guanylyl Cyclase Signaling Pathway Modulates Membrane Activity States and Electrophysiological Properties of Striatal Medium Spiny Neurons Recorded In Vivo , 2004, The Journal of Neuroscience.

[30]  D. Plenz,et al.  Quantitative Estimate of Synaptic Inputs to Striatal Neurons during Up and Down States In Vitro , 2003, The Journal of Neuroscience.

[31]  I. Raman,et al.  Depression of Inhibitory Synaptic Transmission between Purkinje Cells and Neurons of the Cerebellar Nuclei , 2002, The Journal of Neuroscience.

[32]  J. Deniau,et al.  Synaptic Convergence of Motor and Somatosensory Cortical Afferents onto GABAergic Interneurons in the Rat Striatum , 2002, The Journal of Neuroscience.

[33]  A. Grace,et al.  Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and signaling mechanisms , 2002, Synapse.

[34]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[35]  A. Graybiel,et al.  Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis , 2000, Trends in Neurosciences.

[36]  M. Gernert,et al.  Deficit of Striatal Parvalbumin-Reactive GABAergic Interneurons and Decreased Basal Ganglia Output in a Genetic Rodent Model of Idiopathic Paroxysmal Dystonia , 2000, The Journal of Neuroscience.

[37]  S. Anderson,et al.  Origin and Molecular Specification of Striatal Interneurons , 2000, The Journal of Neuroscience.

[38]  S. Young,et al.  Striatal cells containing aromatic l-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons , 2000, Neuroscience.

[39]  A. Parent,et al.  Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human , 2000, Brain Research.

[40]  Y. Kubota,et al.  Dependence of GABAergic Synaptic Areas on the Interneuron Type and Target Size , 2000, The Journal of Neuroscience.

[41]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[42]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[43]  Augusto V. Juorio,et al.  The Synaptic Organization of the Brain, 4th edition , 1998 .

[44]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[45]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[46]  H. Markram,et al.  Information Processing with Frequency-Dependent Synaptic Connections , 1998, Neurobiology of Learning and Memory.

[47]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[48]  A M Graybiel,et al.  Cortically Driven Immediate-Early Gene Expression Reflects Modular Influence of Sensorimotor Cortex on Identified Striatal Neurons in the Squirrel Monkey , 1997, The Journal of Neuroscience.

[49]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[50]  A. Grace,et al.  Cortical afferents modulate striatal gap junction permeability via nitric oxide , 1996, Neuroscience.

[51]  A. Reiner,et al.  Calretinin is largely localized to a unique population of striatal interneurons in rats , 1996, Brain Research.

[52]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[53]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  T. W. Berger,et al.  Functionally distinct subpopulations of striatal neurons are differentially regulated by gabaergic and dopaminergic inputs—I. In vivo analysis , 1992, Neuroscience.

[55]  T. W. Berger,et al.  Functionally distinct subpopulations of striatal neurons are differentially regulated by gabaergic and dopaminergic inputs—II. In vitro analysis , 1992, Neuroscience.

[56]  C. Aoki,et al.  Neuropeptide Y in Cortex and Striatum , 1990, Annals of the New York Academy of Sciences.

[57]  C. Aoki,et al.  Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: ultrastructural basis for interactions with GABAergic and non-GABAergic neurons , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  D. Landis,et al.  Morphology of striatal neurons containing VIP‐like immunoreactivity , 1987, The Journal of comparative neurology.

[59]  G. Shepherd The Synaptic Organization of the Brain , 1979 .