The maximum degree of random planar graphs

Let Pn denote a graph drawn uniformly at random from the class of all simple planar graphs with n vertices. We show that the maximum degree of a vertex in Pn is with probability 1 − o(1) asymptotically equal to c log n, where c a 2.529 is determined explicitly. A similar result is also true for random 2-connected planar graphs. Our analysis combines two orthogonal methods that complement each other. First, in order to obtain the upper bound, we resort to exact methods, i.e., to generating functions and analytic combinatorics. This allows us to obtain fairly precise asymptotic estimates for the expected number of vertices of any given degree in Pn. On the other hand, for the lower bound we use Boltzmann sampling. In particular, by tracing the execution of an adequate algorithm that generates a random planar graph, we are able to explicitly find vertices of sufficiently high degree in Pn.

[1]  Konstantinos Panagiotou,et al.  Maximal biconnected subgraphs of random planar graphs , 2009, TALG.

[2]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[3]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[4]  Marc Noy,et al.  Vertices of given degree in series-parallel graphs , 2010 .

[5]  Konstantinos Panagiotou,et al.  3-Connected Cores In Random Planar Graphs , 2011, Comb. Probab. Comput..

[6]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.

[7]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[8]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[9]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[10]  C. Gröpl,et al.  A direct decomposition of 3-connected planar graphs , 2007 .

[11]  Colin McDiarmid,et al.  Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.

[12]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[13]  Bruce A. Reed,et al.  On the Maximum Degree of a Random Planar Graph , 2008, Comb. Probab. Comput..

[14]  W. T. Tutte Connectivity in graphs , 1966 .

[15]  Konstantinos Panagiotou,et al.  The Degree Sequence of Random Graphs from Subcritical Classes† , 2009, Combinatorics, Probability and Computing.

[16]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[17]  Nicholas C. Wormald,et al.  Sharp Concentration of the Number of Submaps in Random Planar Triangulations , 2003, Comb..

[18]  J. Moon,et al.  On the maximum degree in a random tree. , 1968 .

[19]  Béla Bollobás Surveys in Combinatorics 2007: Hereditary and monotone properties of combinatorial structures , 2007 .

[20]  Konstantinos Panagiotou,et al.  On the degree distribution of random planar graphs , 2011, SODA '11.

[21]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[22]  Eric Fusy Uniform random sampling of planar graphs in linear time , 2009 .

[23]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[24]  Marc Noy,et al.  The Maximum Degree of Series-Parallel Graphs , 2011, Combinatorics, Probability and Computing.

[25]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[26]  Anusch Taraz,et al.  Asymptotic enumeration, global structure, and constrained evolution , 2001, Discret. Math..

[27]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[28]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[29]  Mihyun Kang,et al.  A Complete Grammar for Decomposing a Family of Graphs into 3-Connected Components , 2008, Electron. J. Comb..

[30]  R. Mullin,et al.  The enumeration of c-nets via quadrangulations , 1968 .

[31]  K. Panagiotou,et al.  Properties of Random Graphs via Boltzmann Samplers , 2007 .

[32]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[33]  Marc Noy,et al.  Vertices of given degree in series‐parallel graphs , 2010, Random Struct. Algorithms.