Immunogenic glycoconjugates implicated in parasitic nematode diseases.

[1]  J. McCarthy,et al.  Perspective: prospects for development of vaccines against human helminth infections. , 1996, The Journal of infectious diseases.

[2]  R. Maizels,et al.  Shared carbohydrate epitopes on distinct surface and secreted antigens of the parasitic nematode Toxocara canis. , 1987, Journal of immunology.

[3]  R. Poretz,et al.  The (1----3)-linked alpha-L-fucosyl group of the N-glycans of the Wistaria floribunda lectins is recognized by a rabbit anti-serum. , 1991, Carbohydrate research.

[4]  R. Maizels,et al.  Toxocara and toxocariasis : clinical, epidemiological and molecular perspectives , 1993 .

[5]  J. Vliegenthart,et al.  Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. , 1993, European journal of biochemistry.

[6]  J. Appleton,et al.  Trichinella spiralis: the effect of specific antibody on muscle larvae in the small intestines of weaned rats. , 1993, Experimental parasitology.

[7]  E. Fraser,et al.  Antigenic relationships between the surface-exposed, secreted and somatic materials of the nematode parasites Ascaris lumbricoides, Ascaris suum, and Toxocara canis. , 1989, Clinical and experimental immunology.

[8]  R. Geyer,et al.  Structural analysis and immunohistochemical localization of two acidic glycosphingolipids from the porcine, parasitic nematode, Ascaris suum. , 1998, Glycobiology.

[9]  R. Cummings,et al.  Expression of Lex antigen in Schistosoma japonicum and S.haematobium and immune responses to Lex in infected animals: lack of Lex expression in other trematodes and nematodes. , 1998, Glycobiology.

[10]  D. Freedman Immune dynamics in the pathogenesis of human lymphatic filariasis. , 1998, Parasitology today.

[11]  T R Bürglin,et al.  Caenorhabditis elegans as a model for parasitic nematodes. , 1998, International journal for parasitology.

[12]  S. Reid,et al.  A phosphorylcholine-containing filarial nematode-secreted product disrupts B lymphocyte activation by targeting key proliferative signaling pathways. , 1997, Journal of immunology.

[13]  J. Mather,et al.  Isolation of a larval surface glycoprotein from Haemonchus contortus and its possible role in evading host immunity. , 1995, Molecular and biochemical parasitology.

[14]  B. Grenfell,et al.  Re-assessing the global prevalence and distribution of lymphatic filariasis , 1996, Parasitology.

[15]  M W Lightowlers,et al.  Excretory–secretory products of helminth parasites: effects on host immune responses , 1988, Parasitology.

[16]  L. A. Ellis,et al.  Terminal beta-linked tyvelose creates unique epitopes in Trichinella spiralis glycan antigens. , 1997, Glycobiology.

[17]  K. Nehrke,et al.  cDNA Cloning and Expression of a Family of UDP-N-acetyl-dgalactosamine:PolypeptideN-Acetylgalactosaminyltransferase Sequence Homologs fromCaenorhabditis elegans * , 1998, The Journal of Biological Chemistry.

[18]  D. Molyneux,et al.  Onchocerciasis control: Moving towards the millennium. , 1997, Parasitology today.

[19]  A. Ulmer,et al.  Structural Elucidation and Monokine-inducing Activity of Two Biologically Active Zwitterionic Glycosphingolipids Derived from the Porcine Parasitic Nematode Ascaris suum * , 1998, The Journal of Biological Chemistry.

[20]  M S Chan,et al.  The global burden of intestinal nematode infections--fifty years on. , 1997, Parasitology today.

[21]  M. Harnett,et al.  A filarial nematode secreted product differentially modulates expression and activation of protein kinase C isoforms in B lymphocytes. , 1997, Journal of immunology.

[22]  M. Brandon,et al.  Stage‐specific expression of surface molecules by the larval stages of Haemonchus contortus , 1996, Parasite immunology.

[23]  K. Khoo,et al.  Characterisation of the phosphorylcholine-containing N-linked oligosaccharides in the excretory-secretory 62 kDa glycoprotein of Acanthocheilonema viteae. , 1997, Molecular and biochemical parasitology.

[24]  L. Glickman,et al.  Epidemiology and pathogenesis of zoonotic toxocariasis. , 1981, Epidemiologic reviews.

[25]  Trevor S. Smith,et al.  Haemonchus contortus Glycoproteins Contain N-Linked Oligosaccharides with Novel Highly Fucosylated Core Structures* , 1996, The Journal of Biological Chemistry.

[26]  R. Maizels,et al.  Immunology of human helminth infection. , 1996, International archives of allergy and immunology.

[27]  C. Holland,et al.  THE EXPANDED SPECTRUM OF TOXOCARAL DISEASE , 1988, The Lancet.

[28]  M. McNeil,et al.  Characterization of novel fucosyl- and tyvelosyl-containing glycoconjugates from Trichinella spiralis muscle stage larvae. , 1993, Molecular and biochemical parasitology.

[29]  I. Wilson,et al.  Core alpha1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. , 1998, Glycobiology.

[30]  E. Meeusen,et al.  Developmentally regulated expression of a Haemonchus contortus surface antigen. , 1996, International journal for parasitology.

[31]  L. A. Ellis,et al.  Novel tyvelose-containing tri- and tetra-antennary N-glycans in the immunodominant antigens of the intracellular parasite Trichinella spiralis. , 1994, Glycobiology.

[32]  A. Tsung,et al.  Participation of Parasite Surface Glycoproteins in Antibody-Mediated Protection of Epithelial Cells againstTrichinella spiralis , 1998, Infection and Immunity.

[33]  R. Grencis Th2-mediated host protective immunity to intestinal nematode infections. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  M. Blaxter,et al.  Nematode surface coats: actively evading immunity. , 1992, Parasitology today.

[35]  D. Despommier,et al.  Developmental expression of a 43-kDa secreted glycoprotein from Trichinella spiralis. , 1996, Molecular and biochemical parasitology.

[36]  A. Dell,et al.  The novel core fucosylation of Haemonchus contortus N-glycans is stage specific. , 1998, Molecular and biochemical parasitology.

[37]  K. Thalberg,et al.  Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2 , 1987, Allergy.

[38]  D. Pritchard,et al.  The relationship between immunological responsiveness controlled by T-helper 2 lymphocytes and infections with parasitic helminths , 1997, Parasitology.

[39]  R. Maizels,et al.  Species‐specific and common epitopes on the secreted and surface antigens of Toxocara cati and Toxocara canis infective larvae , 1987, Parasite immunology.

[40]  M. Harnett,et al.  Inhibition of murine B cell proliferation and down-regulation of protein kinase C levels by a phosphorylcholine-containing filarial excretory-secretory product. , 1993, Journal of immunology.

[41]  R. Maizels,et al.  An abundantly expressed mucin-like protein from Toxocara canis infective larvae: the precursor of the larval surface coat glycoproteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Harnett,et al.  Induction of signalling anergy via the T‐cell receptor in cultured Jurkat T cells by pre‐exposure to a filarial nematode secreted product , 1998, Parasite immunology.

[43]  F. Finkelman,et al.  Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. , 1997, Annual review of immunology.

[44]  R. Maizels,et al.  Phosphorylcholine‐bearing antigens in filarial nematode parasites: analysis of somatic extracts, in‐vitro secretions and infection sera from Brugia malayi and B. pahangi , 1987, Parasite immunology.

[45]  R. Cummings,et al.  Characterization of the N-linked oligosaccharides in glycoproteins synthesized by microfilariae of Dirofilaria immitis. , 1993, The Journal of parasitology.

[46]  R. Maizels,et al.  Characterization of nematode glycoproteins: the major O-glycans of Toxocara excretory-secretory antigens are O-methylated trisaccharides. , 1991, Glycobiology.

[47]  W. Harnett,et al.  Acanthocheilonema viteae: phosphorylcholine is attached to the major excretory-secretory product via an N-linked glycan. , 1993, Experimental parasitology.

[48]  R. Maizels,et al.  Immunological modulation and evasion by helminth parasites in human populations , 1993, Nature.

[49]  L. März,et al.  The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of alpha 1,3-fucosylation of the asparagine-bound N-acetylglucosamine. , 1992, The Biochemical journal.

[50]  R. Maizels,et al.  Surface associated glycoproteins from Toxocara canis larval parasites. , 1990, Acta tropica.

[51]  R. Cummings,et al.  Molecular cloning and characterization of an alpha1,3 fucosyltransferase, CEFT-1, from Caenorhabditis elegans. , 1998, Glycobiology.

[52]  S. Gillespie The epidemiology of Toxocara canis. , 1988, Parasitology today.