Color Rabbit: Guiding the distance of local maximums in illumination estimation

In this paper the Color Rabbit (CR), a new low-level statistics-based color constancy algorithm for illumination estimation is proposed and tested. Based on the Color Sparrow (CS) algorithm it combines multiple local illumination estimations found by using a new approach into a global one. The algorithm is tested on several publicly available color constancy databases and it outperforms almost all other color constancy algorithms in terms of accuracy and execution speed.

[1]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[2]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[3]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[4]  Sven Loncaric,et al.  Using the Random Sprays Retinex Algorithm for Global Illumination Estimation , 2013, ArXiv.

[5]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Kobus Barnard,et al.  Estimating the scene illumination chromaticity by using a neural network. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Cordelia Schmid,et al.  Using High-Level Visual Information for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Mark S. Drew,et al.  Colour Constancy from Both Sides of the Shadow Edge , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[10]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[11]  Joost van de Weijer,et al.  Computational Color Constancy: Survey and Experiments , 2011, IEEE Transactions on Image Processing.

[12]  Keigo Hirakawa,et al.  Color Constancy with Spatio-Spectral Statistics , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Joost van de Weijer,et al.  Improving Color Constancy by Photometric Edge Weighting , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Ingeborg Tastl,et al.  Gamut Constrained Illuminant Estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[16]  Graham D. Finlayson,et al.  Colour constancy using the chromagenic constraint , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Alessandro Rizzi,et al.  Random Spray Retinex: A New Retinex Implementation to Investigate the Local Properties of the Model , 2007, IEEE Transactions on Image Processing.

[18]  Graham D. Finlayson,et al.  The bright-chromagenic algorithm for illuminant estimation , 2007, Color Imaging Conference.

[19]  Graham D. Finlayson,et al.  Re-evaluating colour constancy algorithms , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[20]  Sven Loncaric,et al.  Light Random Sprays Retinex: Exploiting the Noisy Illumination Estimation , 2013, IEEE Signal Processing Letters.

[21]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[22]  Theo Gevers,et al.  Color Constancy using Natural Image Statistics , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Mark S. Drew,et al.  The Role of Bright Pixels in Illumination Estimation , 2012, Color Imaging Conference.