Contagious Sets in Expanders

We consider the following activation process in undirected graphs: a vertex is active either if it belongs to a set of initially activated vertices or if at some point it has at least r active neighbors, where r > 1 is the activation threshold. A contagious set is a set whose activation results with the entire graph being active. Given a graph G, let m(G, r) be the minimal size of a contagious set. It is known that for every d-regular or nearly d-regular graph on n vertices, m(G, r) ≤ O(nr/d). We consider such graphs that additionally have expansion properties, parameterized by the spectral gap and/or the girth of the graphs. The general flavor of our results is that sufficiently strong expansion properties imply that m(G, 2) ≤ O(n/d2) (and more generally, m(G, r) ≤ O(n/dr/(r-1))). In addition, we demonstrate that rather weak assumptions on the girth and/or the spectral gap suffice in order to imply that m(G, 2) ≤ O(n log d/d2). For example, we show this for graphs of girth at least 7, and for graphs with λ(G) < (1 − e)d, provided the graph has no 4-cycles. Our results are algorithmic, entailing simple and efficient algorithms for selecting contagious sets.

[1]  Ronitt Rubinfeld,et al.  Short paths in expander graphs , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[2]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[3]  B. Sudakov,et al.  Minors in Expanding Graphs , 2007, 0707.0133.

[4]  Éva Tardos,et al.  Which Networks are Least Susceptible to Cascading Failures? , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[5]  Rolf Niedermeier,et al.  Constant Thresholds Can Make Target Set Selection Tractable , 2012, Theory of Computing Systems.

[6]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[7]  Daniel Reichman New bounds for contagious sets , 2012, Discret. Math..

[8]  Béla Bollobás,et al.  Bootstrap percolation on the hypercube , 2006 .

[9]  N. Wormald,et al.  Models of the , 2010 .

[10]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[11]  G. Semerjian,et al.  Minimal Contagious Sets in Random Regular Graphs , 2014, 1407.7361.

[12]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[13]  David Peleg,et al.  Size Bounds for Dynamic Monopolies , 1998, Discret. Appl. Math..

[14]  Eyal Ackerman,et al.  Combinatorial model and bounds for target set selection , 2010, Theor. Comput. Sci..

[15]  Svante Janson,et al.  On percolation in random graphs with given vertex degrees , 2008, 0804.1656.

[16]  Ning Chen,et al.  On the approximability of influence in social networks , 2008, SODA '08.

[17]  Alan M. Frieze,et al.  Existence and construction of edge disjoint paths on expander graphs , 1992, STOC '92.

[18]  Uriel Feige,et al.  Contagious Sets in Random Graphs , 2016 .

[19]  Nisheeth K. Vishnoi,et al.  Unique games on expanding constraint graphs are easy: extended abstract , 2008, STOC.

[20]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[21]  Béla Bollobás,et al.  Random Graphs , 1985 .

[22]  Ashkan Aazami,et al.  Approximation Algorithms and Hardness for Domination with Propagation , 2007, SIAM J. Discret. Math..

[23]  Ilan Newman,et al.  Treewidth governs the complexity of target set selection , 2011, Discret. Optim..

[24]  Alan M. Frieze,et al.  Existence and Construction of Edge-Disjoint Paths on Expander Graphs , 1994, SIAM J. Comput..

[25]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[26]  Ivan Rapaport,et al.  On Dissemination Thresholds in Regular and Irregular Graph Classes , 2008, LATIN.

[27]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[28]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[29]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[30]  Noga Alon,et al.  Scalable Secure Storage when Half the System Is Faulty , 2000, ICALP.

[31]  Yuval Peres,et al.  Bootstrap Percolation on Infinite Trees and Non-Amenable Groups , 2003, Combinatorics, Probability and Computing.

[32]  Svante Janson,et al.  Majority bootstrap percolation on the random graph G(n,p) , 2010, 1012.3535.

[33]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[34]  Wojciech Samotij,et al.  Large Bounded Degree Trees in Expanding Graphs , 2010, Electron. J. Comb..

[35]  Penny E. Haxell Tree embeddings , 2001, J. Graph Theory.

[36]  Andrew J. Uzzell,et al.  The time of bootstrap percolation with dense initial sets , 2012, 1205.3922.

[37]  J.-P. Eckmann,et al.  Remarks on bootstrap percolation in metric networks , 2009 .

[38]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[39]  Christian Scheideler,et al.  The Effect of Faults on Network Expansion , 2004, SPAA '04.

[40]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[41]  N. Alon,et al.  The Probablistic Method , 2000, SODA '92.

[42]  József Balogh,et al.  Random disease on the square grid , 1998, Random Struct. Algorithms.

[43]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[44]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[45]  Noga Alon,et al.  Finding Disjoint Paths in Expanders Deterministically and Online , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[46]  N. Wormald Models of random regular graphs , 2010 .

[47]  József Balogh,et al.  Bootstrap percolation on the random regular graph , 2007, Random Struct. Algorithms.

[48]  Béla Bollobás,et al.  Random Graphs , 1985 .