Plasma-Assisted Molecular Beam Epitaxy 1

[1]  J. Speck,et al.  Metal-oxide catalyzed epitaxy (MOCATAXY): the example of the O plasma-assisted molecular beam epitaxy of β-(AlxGa1−x)2O3/β-Ga2O3 heterostructures , 2018, Applied Physics Express.

[2]  J. Speck,et al.  Structural and electronic properties of Ga2O3-Al2O3 alloys , 2018, Applied Physics Letters.

[3]  O. Bierwagen,et al.  Metal-Exchange Catalysis in the Growth of Sesquioxides: Towards Heterostructures of Transparent Oxide Semiconductors. , 2017, Physical review letters.

[4]  U. Singisetti,et al.  Electron mobility in monoclinic β-Ga_2O_3—Effect of plasmon-phonon coupling, anisotropy, and confinement , 2017, 1709.08117.

[5]  Jared M. Johnson,et al.  Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor , 2017, 1706.09492.

[6]  C. G. Van de Walle,et al.  Fundamental limits on the electron mobility of β-Ga2O3 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  James S. Speck,et al.  Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy , 2017 .

[8]  S. Rajan,et al.  Delta-doped β-gallium oxide field-effect transistor , 2017, 1702.06584.

[9]  J. Speck,et al.  Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy , 2017 .

[10]  J. Speck,et al.  Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy , 2017 .

[11]  M. Baldini,et al.  Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model , 2016 .

[12]  J. Speck,et al.  Composition determination of β-(AlxGa1−x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction , 2016 .

[13]  O. Bierwagen,et al.  The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy , 2015 .

[14]  J. Speck,et al.  Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy , 2014 .

[15]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[16]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[17]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[18]  James S. Speck,et al.  β-Ga2O3 growth by plasma-assisted molecular beam epitaxya) , 2010 .

[19]  S. Stemmer,et al.  Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction , 2009 .

[20]  J. Speck,et al.  Plasma-assisted molecular beam epitaxy of SnO2 on TiO2 , 2008 .

[21]  J. Speck,et al.  In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction , 2008, 2401.17339.

[22]  Takayoshi Oshima,et al.  Surface morphology of homoepitaxial -Ga 2O 3 thin films grown by molecular beam epitaxy , 2008 .

[23]  J. Speck,et al.  High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy , 2007 .

[24]  K. Shimamura,et al.  Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3 , 2006 .

[25]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[26]  Kando,et al.  Negative ions in a radio-frequency oxygen plasma. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  E. F. Osborn,et al.  The System Alumina‐Gallia‐Water , 1952 .