Induction of Tetraploid Lotus japonicus and Interspecific Hybridization with Super‐Root‐Derived Lotus corniculatus Regenerants
暂无分享,去创建一个
R. Akashi | A. Suzuki | M. Hashiguchi | Hidenori Tanaka | F. Hoffmann | M. Muguerza | Rinda Puspasari | Yuya Suematsu
[1] J. Doležel,et al. Ploidy identification of doubled chromosome number plants in Viola × wittrockiana Gams. M 1-generation , 2018 .
[2] Y. Saeki,et al. The phenomenon of root elongation and high respiration activity in the rolB-gene-enhanced FSL#35 variant of Lotus corniculatus FOX-SR line , 2014 .
[3] Y. Saeki,et al. Functional genetic analysis of Arabidopsis thaliana SYNC1 in Lotus corniculatus super-growing roots using the FOX gene-hunting system , 2014 .
[4] F. Paolocci,et al. Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes , 2014, BMC Plant Biology.
[5] O. Borsani,et al. Generation and Characterization of Interspecific Hybrids of Lotus uliginosus × Lotus corniculatus , 2012 .
[6] K. Shinozaki,et al. FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. , 2011, Journal of plant physiology.
[7] C. Simioni,et al. Chromosome duplication in Brachiaria (A. Rich.) Stapf allows intraspecific crosses. , 2009 .
[8] R. Akashi,et al. Induction of tetraploid ruzigrass (Brachiaria ruziziensis) plants by colchicine treatment of in vitro multiple‐shoot clumps and seedlings , 2009 .
[9] W. Liu,et al. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics , 2009, BMC Plant Biology.
[10] R. Akashi,et al. Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation. , 2008, Journal of plant physiology.
[11] H. Mori,et al. Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.
[12] M. Bao,et al. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology , 2007, Euphytica.
[13] N. Urwin,et al. Generation and characterisation of colchicine-induced autotetraploid Lavandula angustifolia , 2007, Euphytica.
[14] R. Motohashi,et al. The FOX hunting system: an alternative gain-of-function gene hunting technique. , 2006, The Plant journal : for cell and molecular biology.
[15] V. Stanys,et al. In vitro induction of polyploidy in japanese quince (Chaenomeles japonica) , 2006, Plant Cell, Tissue and Organ Culture.
[16] E. Ploschuk,et al. Physiological and Anatomical Basis of Differential Tolerance to Soil Flooding of Lotus corniculatus L. and Lotus glaber Mill , 2005, Plant and Soil.
[17] B. Chen,et al. In vitro production and identification of autotetraploids of Scutellaria baicalensis , 2002, Plant Cell, Tissue and Organ Culture.
[18] W. Grant,et al. Interspecific hybridization between diploid species of Lotus (Leguminosae) , 1971, Genetica.
[19] G. S. Randhawa,et al. Increasing colchicine effectiveness in woody plants with special reference to fruit crops , 1965, Euphytica.
[20] M. T. Schifino,et al. Induction of polyploidy and cytological characterization of autotetraploids of Trifolium riograndense Burkart (Leguminosae) , 2004, Euphytica.
[21] J. K. Jones,et al. Improved techniques for the induction and isolation of polyploids in the genus Fragaria , 2004, Euphytica.
[22] W. Grant,et al. Chromosome differentiation in diploid species of Lotus (Leguminosae) , 2004, Theoretical and Applied Genetics.
[23] J. Steiner,et al. Morphological comparison of progeny derived from 4x-2x and 4x-4x hybridizations of Lotus glaber Mill. and L. corniculatus L. , 2003 .
[24] R. Akashi,et al. Super roots in Lotus corniculatus : A unique tissue culture and regeneration system in a legume species , 2003 .
[25] M. Kawaguchi. Lotus japonicus `Miyakojima' MG-20: An Early-Flowering Accession Suitable for Indoor Handling , 2000, Journal of Plant Research.
[26] S. Tabata,et al. Genome and Chromosome Dimensions of Lotus japonicus , 2000, Journal of Plant Research.
[27] R. Akashi,et al. Plants from protoplasts isolated from a long-term root culture (super root) of Lotus corniculatus. , 2000 .
[28] F. Dazzo,et al. Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus , 1998 .
[29] R. Akashi,et al. Selection of a super-growing legume root culture that permits controlled switching between root cloning and direct embryogenesis , 1998, Theoretical and Applied Genetics.
[30] R. Akashi,et al. High-frequency embryogenesis from cotyledons of bird's-foot trefoil (Lotus corniculatus) and its effective utilization in Agrobacterium tumefaciens-mediated transformation , 1998 .
[31] J. Stougaard,et al. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics , 1992 .
[32] W. Grant,et al. New sources of indehiscence for birdsfoot trefoil (Lotus corniculatus, Fabaceae) produced by interspecific hybridization , 1988 .
[33] D. Galbraith,et al. Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues , 1983, Science.
[34] M. Dujardin,et al. Induction par la colchicine de formes autotetraploides chez Brachiaria ruziziensis Germain et Evrard (Graminee) , 1981 .
[35] R. Turkington,et al. THE BIOLOGY OF CANADIAN WEEDS. 41. Lotus corniculatus L. , 1980 .
[36] F. Skoog,et al. A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .
[37] F. Bent. INTERSPECIFIC HYBRIDIZATION IN THE GENUS LOTUS , 1962 .