Fitting Single-Walled Carbon Nanotube Optical Spectra

In this work, a comprehensive methodology for the fitting of single-walled carbon nanotube absorption spectra is presented. Different approaches to background subtraction, choice of line profile, and calculation of full width at half-maximum are discussed both in the context of previous literature and the contemporary understanding of carbon nanotube photophysics. The fitting is improved by the inclusion of exciton–phonon sidebands, and new techniques to improve the individualization of overlapped nanotube spectra by exploiting correlations between the first- and second-order optical transitions and the exciton–phonon sidebands are presented. Consideration of metallic nanotubes allows an analysis of the metallic/semiconducting content, and a process of constraining the fit of highly congested spectra of carbon nanotube solid films according to the spectral weights of each (n, m) species in solution is also presented, allowing for more reliable resolution of overlapping peaks into single (n, m) species contributions.

[1]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[2]  S. Haile,et al.  Carbon nanotubes as electronic interconnects in solid acid fuel cell electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[3]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[4]  S. Bachilo,et al.  Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. , 2011, Analytical chemistry.

[5]  G. Lanzani,et al.  Free-carrier generation in aggregates of single-wall carbon nanotubes by photoexcitation in the ultraviolet regime. , 2011, Physical review letters.

[6]  E. Wigner,et al.  Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie , 1930 .

[7]  S. Bachilo,et al.  Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. , 2007, Nano letters.

[8]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[9]  D. Resasco,et al.  Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. , 2006, The journal of physical chemistry. B.

[10]  M. Heben,et al.  Analysis of photoluminescence from solubilized single-walled carbon nanotubes , 2005 .

[11]  Juha Lehtonen,et al.  Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles , 2013, Scientific Reports.

[12]  J. Streit,et al.  Variance Spectroscopy. , 2015, The journal of physical chemistry letters.

[13]  Minquan Tian,et al.  Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications , 2003 .

[14]  J. Casci,et al.  Insights into Brønsted acid sites in the zeolite mordenite , 2014 .

[15]  M. Arnold,et al.  Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[17]  Electronic structure and dynamics of optically excited single-wall carbon nanotubes , 2003, cond-mat/0310109.

[18]  R. Saito,et al.  Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. , 2012, ACS nano.

[19]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[20]  Sandip Niyogi,et al.  Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[21]  F. Hennrich,et al.  Separation of single-walled carbon nanotubes with a gel permeation chromatography system. , 2014, ACS nano.

[22]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[23]  Jason K. Streit,et al.  Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. , 2014, Nano letters.

[24]  Jens Ludwig,et al.  Performance Enhancement of Polymer‐Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling , 2016 .

[25]  M. Dresselhaus,et al.  Photoluminescence intensity of single-wall carbon nanotubes , 2006 .

[26]  Li Wei,et al.  (n,m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. , 2007, Journal of the American Chemical Society.

[27]  Stéphane Berciaud,et al.  Absorption spectroscopy of individual single-walled carbon nanotubes. , 2007, Nano letters.

[28]  J. Shapter,et al.  Patterned ferrocenemethanol modified carbon nanotube electrodes on silane modified silicon , 2007 .

[29]  S. Hooker,et al.  Measurement Issues in Single Wall Carbon Nanotubes , 2008 .

[30]  Ming Zheng,et al.  Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. , 2013, Journal of the American Chemical Society.

[31]  R. Meier On art and science in curve-fitting vibrational spectra , 2005 .

[32]  S. Bachilo,et al.  Analyzing absorption backgrounds in single-walled carbon nanotube spectra. , 2011, ACS nano.

[33]  Guangming Huang,et al.  Simple empirical analytical approximation to the Voigt profile , 2001 .

[34]  M. Yumura,et al.  Fundamental Importance of Background Analysis in Precise Characterization of Single-Walled Carbon Nanotubes by Optical Absorption Spectroscopy , 2010 .

[35]  Brian J Landi,et al.  Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy. , 2005, The journal of physical chemistry. B.

[36]  Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting , 2012 .

[37]  R. Braatz,et al.  Estimation of the (n,m) concentration distribution of single-walled carbon nanotubes from photoabsorption spectra. , 2006, Analytical chemistry.

[38]  S. Bachilo,et al.  (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy. , 2016, Nano letters.

[39]  S. Louie,et al.  Systematic determination of absolute absorption cross-section of individual carbon nanotubes , 2013, Proceedings of the National Academy of Sciences.

[40]  W. J. DeCoursey,et al.  Introduction: Probability and Statistics , 2003 .

[41]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[42]  M. Dresselhaus,et al.  Exciton photophysics of carbon nanotubes. , 2007, Annual review of physical chemistry.

[43]  L. Pfefferle,et al.  (n,m) Abundance evaluation of single-walled carbon nanotubes by fluorescence and absorption spectroscopy. , 2006, Journal of the American Chemical Society.

[44]  T. Hertel,et al.  Quantitative analysis of optical spectra from individual single-wall carbon nanotubes , 2003 .

[45]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[46]  W. Pernice,et al.  Cavity-enhanced light emission from electrically driven carbon nanotubes , 2016, Nature Photonics.

[47]  A. G. Ryabenko,et al.  UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy , 2004 .

[48]  R. Pomraenke,et al.  Exciton binding energies in carbon nanotubes from two-photon photoluminescence , 2005 .

[49]  C. Beirnaert,et al.  Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. , 2015, Nature nanotechnology.

[50]  Walther Assenmacher,et al.  Einführung in die Ökonometrie , 2002 .

[51]  J. Shapter,et al.  The potential sunlight harvesting efficiency of carbon nanotube solar cells , 2013 .

[52]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[53]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[54]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[55]  H. Kataura,et al.  Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography , 2011, Nature communications.

[56]  M. Engel,et al.  Photocurrent spectroscopy of (n, m) sorted solution-processed single-walled carbon nanotubes. , 2014, ACS nano.

[57]  Ying Tian,et al.  Analysis of the Size Distribution of Single-Walled Carbon Nanotubes Using Optical Absorption Spectroscopy , 2010 .

[58]  J. Weideman Computations of the complex error function , 1994 .

[59]  J. Shapter,et al.  The Role of Nanotubes in Carbon Nanotube–Silicon Solar Cells , 2013 .

[60]  J. Tersoff,et al.  Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. , 2005, Physical review letters.

[61]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[62]  H. Kataura,et al.  Optical Evaluation of the Metal-to-Semiconductor Ratio of Single-Wall Carbon Nanotubes , 2008 .

[63]  Ali Afzali,et al.  High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. , 2013, ACS nano.

[64]  J. J. Olivero,et al.  Empirical fits to the Voigt line width: A brief review , 1977 .

[65]  S. Bachilo,et al.  Photoluminescence Side Band Spectroscopy of Individual Single-Walled Carbon Nanotubes , 2016 .

[66]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[67]  Phaedon Avouris,et al.  High-frequency performance of scaled carbon nanotube array field-effect transistors , 2012 .

[68]  Josef Humlíček,et al.  Optimized computation of the voigt and complex probability functions , 1982 .

[69]  Michael S Arnold,et al.  Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. , 2010, ACS nano.

[70]  Jian He,et al.  The accurate calculation of the Fourier transform of the pure Voigt function , 2005 .

[71]  Ruey S. Tsay,et al.  Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .

[72]  F. Hennrich,et al.  Raman study of individually dispersed single-walled carbon nanotubes under pressure , 2006 .

[73]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[74]  Franz Schreier,et al.  Optimized implementations of rational approximations for the Voigt and complex error function , 2011 .

[75]  Ying Tian,et al.  A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy , 2015 .